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Abstract

We study the Gross-Pitaevskii equation in dimension two with periodic conditions in
one direction, or equivalently on the product space R × TL where L > 0 and TL = R/LZ.
We focus on the variational problem consisting in minimizing the Ginzburg-Landau energy
under a fixed momentum constraint. We prove that there exists a threshold value for L below
which minimizers are the one-dimensional dark solitons, and above which no minimizer can
be one-dimensional.

1 Introduction

We are interested in the Gross-Pitaevskii equation

i∂tΨ = ∆Ψ+Ψ
(
1− |Ψ|2

)
. (GP)

In Physics, this equation is a classical model for Bose-Einstein condensates, superfluidity or
supraconductivity [13, 15]. It also gives account of the propagation of dark solitons in nonlinear
optics [14].

Our attention in this paper is devoted to the case where the spatial domain is the product space
R× TL, where L > 0 and TL = R/LZ, so that Ψ ≡ Ψ(x, y, t) : (R× TL)× R → C. Solutions of
the 1D equation can be considered as solutions in this 2D setting with a trivial dependence on
the variable y.

Dark solitons are special solutions of the 1D Gross-Pitaevskii equation. They are travelling waves
of the form

Ψc(x, t) = uc(x− ct),

where c is any subsonic speed, i.e. |c| <
√
2. Their profile uc is solution to the ordinary differential

equation
i c u′c + u′′c +

(
1− |uc|2

)
uc = 0, (1)

and is explicitly given by the expression

uc(x) =

√
2− c2

2
tanh

(√
2− c2

2
x

)
+ i

c√
2
. (2)
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For c = 0, the profile u0 vanishes and the corresponding soliton is called the black or kink soliton.
The other solitons are called grey solitons.

Variational characterizations of the dark solitons were proved in [1, 3]. These characterizations
are based on two conserved quantities. The first one is the 1D Ginzburg-Landau energy

E(ψ) :=
1

2

∫
R
|ψ′|2 + 1

4

∫
R

(
1− |ψ|2

)2
, (3)

which is the Hamiltonian of the Gross-Pitaevskii equation. Corresponding to this energy is the
energy set

X(R) :=
{
ψ ∈ H1

loc(R) : ψ′ ∈ L2(R) and 1− |ψ|2 ∈ L2(R)
}
, (4)

which provides the natural functional framework for analyzing the equation.

The second one is the momentum P , which is formally defined as

P (ψ) =
1

2

∫
R
〈iψ′, ψ〉C,

where, here as in the sequel, the notation 〈z1, z2〉C := Re(z1z̄2) stands for the canonical scalar
product on the 2D real vector space C. The expression of P (ψ) above certainly makes sense
if ψ′ is compactly supported, but it is generally ill-defined for arbitrary ψ ∈ X(R) due to the
possible lack of integrability of the momentum density 〈iψ′, ψ〉C at infinity. It was shown in [3]
(see also Appendix A below) that a notion of momentum can be rigorously defined on the whole
energy set X(R) provided its value is understood in the quotient space R/πZ. It was called the
untwisted momentum in [3], and denoted by [P ]. Whenever ψ′ has compact support, it holds

[P ](ψ) =
1

2

∫
R
〈iψ′, ψ〉C modulo π.

The characterization of the dark solitons on the line can be phrased as follows.

Proposition 1 ([1, 3]). Let p ∈ R/πZ, with p 6= 0. The minimizers of the variational problem

I(p) := inf
{
E(ψ) : ψ ∈ X(R) s.t. [P ](ψ) = p

}
(5)

are exactly the dark soliton ucp and the function obtained from ucp by translation and constant
phase shift. The value cp ∈ (−

√
2,
√
2) is characterized by the identity [P ](ucp) = p, and the

function p 7→ I(p) has Lipschitz constant equal to
√
2.

In the context of the Gross-Pitaevskii equation on the product space R × TL, we consider the
vector space

H1
loc(R× TL) :=

{
ψ ∈ H1

loc(R2) : ψ is L-periodic with respect to its second variable y
}
. (6)

For our analysis, it is convenient to work on a fixed domain independently of L. For that purpose,
we write T instead of TL when L = 1, and given a function ψ ∈ H1

loc(R×T) and a real parameter
λ > 0, we introduce the rescaled version of the Ginzburg-Landau energy given by

Eλ(ψ) :=
1

2

∫
R×T

(
|∂xψ|2 + λ2|∂yψ|2

)
+

1

4

∫
R×T

(
1− |ψ|2

)2
. (7)

Up to a multiplicative factor λ, the rescaled energy Eλ(ψ) is equal to the Ginzburg-Landau
energy of the function ψλ(x, y) = ψ(x, λy) on the product space R× TL, where L = 1/λ.
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Corresponding to the rescaled Ginzburg-Landau energy Eλ is the energy set

X(R× T) :=
{
ψ ∈ H1

loc(R× T) : ∇ψ ∈ L2(R× T) and 1− |ψ|2 ∈ L2(R× T)
}
. (8)

The untwisted momentum [P ] along the direction x can be extended to X(R×T). We decompose
an arbitrary function ψ ∈ X(R× T) as a Fourier series

ψ(x, y) =
∑
k∈Z

ψ̂k(x)e
2iπky,

and check that the Fourier coefficient ψ̂0 lies in X(R), while the difference w0 = ψ − ψ̂0 is in
H1(R × T). Due to the orthogonality of the functions ψ̂0 and w0, it is natural to define [P ](ψ)
by the expression

[P ](ψ) = [P ](ψ̂0) +
1

2

∫
R
〈i∂xw0, w0〉C modulo π. (9)

Note that to any function in X(R), we can associate a function in X(R × T), which does not
depend on y. By construction, the energy and the momentum of these two functions (either in
X(R) or in X(R× T)) coincide. In the sequel, we shall use the same notation for a function in
X(R) and its extension in X(R× T), in particular for the dark soliton uc.

For p ∈ R/πZ, we next consider the minimization problem under constraint

Iλ(p) := inf
{
Eλ(ψ) : ψ ∈ X(R× T) s.t. [P ](ψ) = p

}
. (10)

Our main result is

Theorem 1. Let p ∈ R/πZ. There exists λp > 0 such that the following statements hold.

(i) For any λ ≥ λp, the minimal value Iλ(p) is equal to

Iλ(p) = I(p).

The dark soliton ucp is a minimizer of the corresponding minimization problem. When λ > λp,
it is the unique minimizer up to translation and phase shift.

(ii) For any 0 < λ < λp, the minimal value Iλ(p) satisfies

Iλ(p) < I(p),

and there does not exist any minimizer depending only on the variable x.

Note that, when 0 < λ < λp, Theorem 1 makes no claim about the existence of minimizers for
Iλ(p), it only asserts that potential candidates must be truly 2D. The fact that minimizers do
exist in such cases will be the object of a future work (see [8]).

Note also that our arguments do not prevent the possible existence of a truly 2D minimizer for
λ = λp.

We have stated Theorem 1 in the case of the spatial domain R× T. With minor modifications,
the proofs carry over to the case of R × T2, and presumably also to R ×M , where M is any
compact Riemannian manifold of dimension d ≤ 2.

Linear transverse instability of solitons for a number of dispersive models, including the Gross-
Pitaevskii equation, was proved by F. Rousset and N. Tzvetkov in [17] (see also [16] for the general
Hamiltonian framework concerning nonlinear transverse instability). In particular, although they
did not consider their variational characterization, it follows from [17, Theorem 3.3] that given
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a dark soliton ucp , there exists λp > 0 such that ucp is not a minimizer for Iλ when λ = λp/k for
some k ≥ 1.

In the next section we sketch the main arguments in the proof of Theorem 1. We follow a
strategy developed by S. Terracini, N. Tzvetkov and N. Visciglia [18] in the different context of
the nonlinear Schrödinger equations on product spaces. In Section 3, we provide the full details
of our proofs. Note that in some places, it will be convenient to identify R/πZ with the interval
(−π/2, π/2]. A number of properties and ingredients related to the energy spaces X(R) and
X(R× T) as well as the untwisted momentum [P ], which we found of independent interest, are
gathered in Appendices A, B and C.

2 Sketch of the proof of Theorem 1

The starting point is to check that the minimal energy Iλ(p) tends to the 1D minimal energy
I(p) as λ → +∞. In this limit, we show that suitable extractions of minimizing sequences
tend to the dark soliton ucp , up to possible translation and phase shift. The key ingredient of
the proof is then to check that these dark solitons are strict local minimizers of the variational
problem corresponding to the minimal energy Iλ(p). In this case, the functions in the previous
minimizing sequences must be equal to a dark soliton for λ large enough. This property is
sufficient to conclude that the minimal energy Iλ(p) is exactly the energy I(p) of dark solitons.

We describe now this strategy with additional details. We first observe, by considering test
functions depending only on the variable x, that we have

Iλ(p) ≤ I(p), (11)

independently of λ > 0. We take advantage of this inequality in order to show that

Iλ(p) → I(p), as λ→ +∞. (12)

Indeed, let ψ ∈ X(R × T), and for convenience assume that ψ is smooth and ψ′ has compact
support. Note first that by definition of the minimal energy I,

Eλ(ψ) =

∫
T
E
(
ψ(·, y)

)
dy +

λ2

2

∫
R×T

|∂yψ|2 ≥
∫
T
I
(
[P ](ψ(·, y)

)
dy +

λ2

2

∫
R×T

|∂yψ|2.

Besides, since the function I has Lipschitz constant equal to
√
2 (see Proposition 1 above), we

have, for all y ∈ T,

I
(
[P ](ψ(·, y))

)
≥ I

(
[P ](ψ)

)
−
√
2
∣∣[P ](ψ(·, y))− [P ](ψ)

∣∣.
Here for p ∈ R/πZ, we denote by |p| the distance between p and zero in R/πZ. We shall show
that ∣∣[P ](ψ(·, y))− [P ](ψ)

∣∣ ≤ 1

λ
Eλ(ψ). (13)

It follows from combining the previous three inequalities that(
1 +

√
2

λ

)
Eλ(ψ) ≥ I

(
[P ](ψ)

)
+
λ

2

∫
R×T

|∂yψ|2. (14)

Considering a minimizing sequence for Iλ(p), this yields in particular(
1 +

√
2

λ

)
Iλ(p) ≥ I

(
p),
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and by (11), also (12).

The term |∂yψ|2 in (14), which is weighted by λ, will enforce minimizing functions for Iλ(p) to
be essentially 1D. In the next lemma, we formalize the previous claims, and combine them with
an additional Pohozaev type property.

Lemma 2. Let p ∈ R/πZ and consider a sequence (λn)n≥0 such that λn → +∞. Then,

Iλn(p) → I(p), as n→ ∞. (15)

Moreover, there exists a sequence (ψn)n≥0 of smooth functions in X(R × T) with compactly
supported gradients, which satisfy [P ](ψn) = p,

Eλn(ψn)− Iλn(p) → 0, and λ2n

∫
R×T

|∂yψn|2 → 0, as n→ ∞. (16)

Besides, we can assume that

1

2

∫
R×T

|∂xψn|2 =
λ2n
2

∫
R×T

|∂yψn|2 +
1

4

∫
R×T

(
1− |ψn|2

)2
. (17)

We can then establish that a subsequence of the functions ψn converges towards a minimizer of
the 1D problem I(p). More precisely, for |c| <

√
2, we introduce the distance dc given by

dc(ψ1, ψ2)
2 =

∥∥∇ψ1 −∇ψ2

∥∥2
L2 +

∥∥η 1
2
c (ψ1 − ψ2)

∥∥2
L2 +

∥∥(1− |ψ1|2)− (1− |ψ2|2)
∥∥2
L2 ,

for functions ψ1 and ψ2 in X(R×T). In the second term, the weight ηc is given by the expression

ηc(x) = 1− |uc(x)|2 =
2− c2

2 cosh
(√

2−c2
2 x

)2 . (18)

The metric dc is taylored for the study of perturbations of uc. Note however that since ηc decays
exponentially at infinity all these metrics induce the same topology on X(R × T). We refer to
Appendix B for more detail about the metric structure corresponding to the distance dc. Using
this distance, we show

Proposition 3. There exist a sequence of real numbers (an)n≥0, a number θ ∈ R, and an
extraction φ : N → N for which

dcp
(
eiθψφ(n)(· − aφ(n), ·), ucp

)
→ 0,

as n→ ∞.

Given any positive number α, we denote

Vp(α) :=
{
ψ = ψ̂0 + w0 ∈ X(R× T) s.t. inf

(a,θ)∈R2
dcp

(
eiθψ̂0(· − a), ucp

)
< α and ‖w0‖H1 < α

}
,

(19)
where we have set as before ψ̂0(x) =

∫
T ψ(x, y) dy for any function ψ ∈ X(R × T). We can

rephrase Proposition 3 (see e.g. statement (i) in Lemma B.4) as the fact that there exists an
integer Nα such that

ψφ(n) ∈ Vp(α), (20)

for any n ≥ Nα. We next show that the profile ucp minimizes the energy Eλ at fixed momentum
p in the open set Vp(α), provided α is sufficiently small and λ is sufficiently large.
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Proposition 4. Let p ∈ R/πZ, with p 6= 0. There exist two positive numbers αp and λp such
that, given any function ψ ∈ Vp(αp), with [P ](ψ) = p, we have

Eλ(ψ) ≥ Eλ(ucp) = I(p), (21)

for any λ ≥ λp. Moreover, equality holds in (21) if and only if ψ(x, y) = e−iθucp(x+ a) for some
a ∈ R and θ ∈ R.

To derive Proposition 4 we use the stability properties of the solitons ucp with respect to the 1D
Gross-Pitaevskii flow. In [4, 12], the orbital stability of the dark solitons was derived from the
coercivity of the functional E − cp[P ] in the neighbourhood of the profiles ucp . Extending this
coercivity property to the sets Vp(α) for α small enough requires to control the dependence on
the variable y. For λ large enough, this can be done by using the coercivity provided by the
term λ2

∫
R×T |∂yψ|

2 in the energy Eλ(ψ). The functional Eλ − cp[P ] is then coercive on the sets
Vp(α) and we obtain (21) when the untwisted momentum [P ] is moreover fixed.

Combining (20) and (21), we are finally led to

Iλ(p) ≥ I(p),

for λ ≥ λp. In view of (11), these two quantities are equal as we have claimed in statement (i)
of Theorem 1.

Before concluding the proof of Theorem 1, we need to precise the behaviour of the minimal
energy Iλ(p) with respect to the parameter λ when λ → 0. This corresponds to the situation
where the unscaled initial torus tends to the whole plane R2, and using some scaling argument
from the plane case, we establish

Lemma 5. Let p ∈ R/πZ. The function λ 7→ Iλ(p) is non-decreasing and continuous on R∗
+,

with
Iλ(p) → 0, (22)

as λ→ 0.

With Lemma 5 at hand, we are in position to complete the proof of Theorem 1.

End of the proof of Theorem 1. Set Λ := {λ ∈ (0,+∞) s.t. Iµ(p) = I(p) for any µ ≥ λ} and
λp = inf Λ. We have just shown in Proposition 4 that Λ is non-empty. Its infimum λp cannot
be equal to 0 due to (22). Hence, λp is positive and moreover, a minimum by continuity of the
map λ 7→ Iλ(p).
Since this map is also non-decreasing, the minimal value Iλ(p) is strictly less than I(p) when
0 < λ < λp. Moreover, if a function ψ ∈ X(R × T), with [P ](ψ) = p, only depends on the
variable x, then it follows from Proposition 1 that

Eλ(ψ) = E(ψ) ≥ I(p) > Iλ(p).

Therefore, a possible minimizer cannot only depend on the variable x.

When λ ≥ λp instead, we have Iλ(p) = I(p) = Eλ(ucp), so that the profile ucp is a minimizer of
the minimization problem (10). For λ > λp, assume for the sake of a contradiction the existence
of a minimizer ψ ∈ X(R× T) such that Eλ(ψ) = Iλ(p) = I(p), [P ](ψ) = p, and∫

R×T
|∂yψ|2 6= 0.
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For λp < µ < λ, we obtain

Iµ(p) ≤ Eµ(ψ) = Eλ(ψ) +
µ2 − λ2

2

∫
R×T

|∂yψ|2 < Eλ(ψ) = I(p),

which contradicts the definition of the minimum λp. Therefore, a possible minimizer cannot
depend on the variable y, so that it minimizes the 1D Ginzburg-Landau energy at fixed un-
twisted momentum. In view of Proposition 1, the profile ucp is therefore the unique minimizer
of the minimization problem (10) up to translation and phase shift. This concludes the proof of
Theorem 1.

3 Details in the proof of Theorem 1

3.1 Some useful approximation results

In Appendix A, we introduce the set of non-vanishing functions

NVX(R) :=
{
ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| > 0

}
,

and show that, for ψ = ρeiθ ∈ NVX(R), the momentum

P (ψ) =
1

2

∫
R
(1− ρ2)θ′,

is well-defined and satisfies P (ψ) = [P ](ψ) modulo π. This set is used throughout for the proof
of Theorem 1, in particular in Lemma 6 below.

Adapting the argument in [2, Lemma 3.3] we first show

Lemma 6. Let λ > 0, p ∈ R and α ∈ R be fixed. There exists a sequence (ψn)n∈N of smooth
functions in NVX(R) such that the functions ψn − eiα are compactly supported, and with

P (ψn) = p and Eλ(ψn) = E(ψn) →
√
2 |p|,

as n→ ∞.

Proof. We argue as in the proof of [2, Lemma 3.3]. Assume first that p is positive. Consider a
function ξ ∈ C∞

c (R) and two positive numbers µ and ε such that µε‖∂xξ‖L∞(R) < 1. Set

ρ(x, y) = 1− µε ∂xξ(εx), θ(x, y) = α+
√
2µ ξ(εx) and ψ(x, y) = ρ(x, y)eiθ(x,y),

for any (x, y) ∈ R× T. We compute

1

2

∫
R×T

|∂xψ|2 =
1

2

∫
R×T

(
(∂xρ)

2+ρ2(∂xθ)
2
)
=
µ2ε3

2

∫
R
(∂xxξ)

2+µ2ε

∫
R

(
1−µε ∂xξ

)2
(∂xξ)

2, (23)

and
1

4

∫
R×T

(
1− |ψ|2

)2
= µ2ε

∫
R×T

(∂xξ)
2 − µ3ε2

∫
R×T

(∂xξ)
3 +

µ4ε3

4

∫
R×T

(∂xξ)
4. (24)

The function ψ belongs to NVX(R), so that, by definition (A.5) and Lemma C.4, its momentum
is given by

P (ψ) =
1

2

∫
R×T

(
1− ρ2

)
∂xϕ =

√
2µ2ε

∫
R×T

(∂xξ)
2 − µ3ε2√

2

∫
R×T

(∂xξ)
3.

7



We now assume that the L2-norm of the derivative ∂xξ is equal to 1 and we choose µn = n for
a given integer n. At least when n is large enough, we can find a positive number εn such that
P (ψ) = p. Moreover, we have

εn ∼ p√
2n2

,

as n→ ∞. In particular, we check that

µnεn → 0,

as n → ∞, so that the condition µnεn‖∂xξ‖L∞(R) < 1 is indeed satisfied for n large enough. In
view of (23) and (24), we also obtain

Eλ(ψ) →
n→∞

√
2p.

In conclusion, the functions ψn = ψ satisfy all the statements in Lemma 6 for p positive. When
p is negative, the functions ψ̃n = e2iαψn also satisfy these conclusions, while for p = 0 it suffices
to take ψn = 1. This completes the proof of Lemma 6.

Combining Lemma 6 with Corollary B.5, we prove

Lemma 7. Let λ > 0 be fixed. Given a function ψ ∈ X(R×T), there exists a sequence (ψn)n≥0

of smooth functions in X(R× T), which satisfies the following properties.

(i) Given any integer n ≥ 0, there exist two positive numbers R±
n and two numbers θ±n for which

ψn(x, y) = eiθ
±
n ,

for any ±x ≥ ±R±
n and any y ∈ T.

(ii) We have
[P ](ψn) = [P ](ψ),

for any n ≥ 0.

(iii) We also have
Eλ(ψn) → Eλ(ψ),

as n→ ∞.

Proof. From Corollary B.5 and Lemma C.3, we can find a sequence of smooth functions ψ̃n in
X(R×T), which satisfy statements (i) and (iii) of Lemma 7 for numbers R̃±

n and θ̃±n , as well as

[P ](ψ̃n) → [P ](ψ), (25)

in the limit n → ∞. Hence we are reduced to check that we can modify the functions ψ̃n, so
that their momentum is exactly equal to the momentum of ψ. When these two quantities are
actually equal, we simply set ψn = ψ̃n. When they are not, we invoke Lemma 6 with α = θ̃+n and
pn ∈ (−π/2, π/2] such that pn = [P ](ψ̃n) − [P ](ψ) modulo π. This provides a smooth function
ψ̌n such that the function ψ̌n−eiθ̃

+
n is compactly supported in an interval of the form [−Ř−

n , Ř
+
n ],

with P (ψ̌n) = pn and Eλ(ψ̌n) ≤
√
2|pn|. We next set

ψn(x, y) =

{
ψ̃n(x, y) if x ≤ R̃+

n + 1,

ψ̌n(x− R̃+
n − Ř−

n − 2, y) if x ≥ R̃+
n + 1.
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By construction, the function ψn is smooth, belongs to X(R × T) and satisfies statement (i) of
Lemma 7. Moreover, it follows from Lemmas C.1 and C.5 that

[P ](ψn) = [P ](ψ̃n) + P (ψ̌n) = [P ](ψ),

modulo π. Finally, we also derive from (25) that

Eλ(ψn) = Eλ(ψ̃n) + Eλ(ψ̌n) → Eλ(ψ),

as n→ ∞. This concludes the proof.

3.2 Proof of Lemma 2

From Lemma 7 and a diagonal argument, we can find a sequence of smooth functions ψn ∈
X(R× T) such that

Eλn(ψn) ≤ Iλn(p) + εn, [P ](ψn) = p, (26)

and moreover there exist positive numbers R±
n and real numbers θ±n such that

ψn(x, y) = eiθ
±
n ,

for any ±x ≥ ±R±
n and any y ∈ T. According to Lemma C.5, the momentum [P ](ψn) is then

given by

[P ](ψn) =

∫
T
pn(y) dy modulo π, (27)

with

pn(y) :=
1

2

∫
R
〈i∂xψn(x, y), ψn(x, y)〉C dx+

1

2

(
θ+n − θ−n

)
= [P ]

(
ψn(·, y)

)
modulo π. (28)

Since the functions ψn are smooth and their derivatives are compactly supported, the functions
pn in the previous definition are well-defined and smooth on T, with

p′n(y) =

∫
R
〈i∂xψn(x, y), ∂yψn(x, y)〉C dx,

by integration by parts. Hence, we infer from the Cauchy-Schwarz inequality, (11) and (26) that∫
T
|p′n(y)| dy ≤ 1

λn
Eλn(ψn) ≤

1

λn

(
I(p) + εn

)
,

so that the Poincaré-Wirtinger inequality in [7] provides∥∥pn − [P ](ψn)
∥∥
L∞(T) ≤

∫
T
|p′n(y)| dy → 0, (29)

as n→ ∞. At this stage, we write

Eλn(ψn) =

∫
T
E
(
ψn(·, y)

)
dy+

λ2n
2

∫
R×T

|∂yψn|2 ≥
∫
T
I
(
[P ](ψn(·, y))

)
dy+

λ2n
2

∫
R×T

|∂yψ2
n|. (30)

Since the function I has Lipschitz constant
√
2, we obtain∣∣I([P ](ψn(·, y)))− I

(
p
)∣∣ ≤ √

2
∣∣pn(y)− [P ](ψn)

∣∣, (31)

for n large enough.
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In view of (30), we conclude that

Eλn(ψn) ≥ I
(
p
)
−
√
2
∥∥pn − [P ](ψn)

∥∥
L∞(T) +

λ2n
2

∫
R×T

|∂yψ2
n|.

Combining with (26) and (29), we first deduce that

λ2n

∫
R×T

|∂yψ2
n| → 0, (32)

as n→ ∞. Moreover, it also follows from (11) and (26) that

I(p) ≥ Iλn(p) ≥ I
(
p
)
− εn −

√
2
∥∥pn − [P ](ψn)

∥∥
L∞(T) +

λ2n
2

∫
R×T

|∂yψ2
n|.

In view of (29) and (32), this is enough to obtain the convergence in (15).

In order to complete the proof of Lemma 2, we now explain how we can assume that ψn satisfies
the Pohozaev identity in (17). It is classical that this identity is based on applying the scaling
(x, y) 7→ (τx, y) for positive numbers τ . For a fixed integer n ≥ 0, the functions

ξτ (x, y) = ψn(τx, y)

are smooth on R × T and satisfy statement (i) in Lemma 7 for the same numbers θ±n as the
function ψn. Arguing as for (27), their untwisted momentum [P ](ξτ ) is given by the formula

[P ](ξτ ) =
1

2

∫
R×T

〈i∂xξτ (x, y), ξτ (x, y)〉C dx dy +
1

2

(
θ+n − θ−n

)
modulo π.

By definition of the functions ξτ and by (27), this quantity reduces to

[P ](ξτ ) =
1

2

∫
R×T

〈i∂xψn(x, y), ψn(x, y)〉C dx dy +
1

2

(
θ+n − θ−n

)
= [P ](ψn) modulo π, (33)

for any positive number τ . Similarly, we compute

1

2

∫
R×T

|∂xξτ |2 =
τ

2

∫
R×T

|∂xψn|2 := Anτ, (34)

and
λ2n
2

∫
R×T

|∂yξτ |2+
1

4

∫
R×T

(
1−|ξτ |2

)2
=

1

τ

(
λ2n
2

∫
R×T

|∂yψn|2+
1

4

∫
R×T

(
1−|ψn|2

)2)
:=

Bn
τ
. (35)

Observe here that An 6= 0. Otherwise, the function ψn would not depend on the variable x, so
that the numbers θ±n would also be equal. As a consequence, the quantity [P ](ψn) in (27) would
be equal to 0, and not to p modulo π. Since An 6= 0, we can combine (34) and (35) to derive
that the energies Eλn(ξτ ) are minimal for τ being chosen as

τn =

√
Bn
An

.

It suffices then to set ξn = ξτn in order to obtain

Eλn(ξn) ≤ Eλn(ψn), (36)

by minimality, as well as the Pohozaev identity

1

2

∫
R×T

|∂xξn|2 =
√
AnBn =

λ2n
2

∫
R×T

|∂yξn|2 +
1

4

∫
R×T

(
1− |ξn|2

)2
,

by (34) and (35). In view of (33) and (36), this completes the proof of Lemma 2, replacing ψn
by ξn.
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3.3 Proof of Proposition 3

We go on with the notation of the proof of Lemma 2. Our first goal is to exhibit a number y∗ ∈ T
such that, up to a possible subsequence, the functions ψn(·, y∗) form an almost minimizing
sequence for the 1D minimization problem I(p). In view of (28), the untwisted momentum
[P ](ψn(·, y)) is equal to pn(y) modulo π for almost any y ∈ T, so that our aim is to find a
number y∗ ∈ T such that

pn(y∗) → p modulo π, and en(y∗) := E(ψn(·, y∗)) → I(p),

as n → ∞. In this direction, we first recall that [P ](ψn) = p. Going back to the proof of
Lemma 2, and more precisely to (29), it follows that

pn(y) → p modulo π, (37)

as n→ ∞, uniformly with respect to y ∈ T. We similarly deduce from (31) that∫
T
|en(y)− I(p)| dy ≤

∫
T
|en(y)− I(pn(y))| dy +

√
2

∫
T
|pn(y)− [P ](ψn)| dy.

Since en(y) ≥ I(pn(y)) by definition of the 1D minimal energy I, we infer again from (31) that∫
T
|en(y)− I(p)| dy ≤ Eλn(ψn)− I(p) + 2

√
2

∫
T
|pn(y)− [P ](ψn)| dy.

Invoking (15) and (29), we are led to∫
T
|en(y)− I(p)| dy → 0,

as n → ∞. As a consequence, we can find a number y∗ ∈ T such that, up to a possible
subsequence, we have

en(y∗) → I(p),

as n→ ∞. In view of (37), we conclude that the functions ψn(·, y∗) form a minimizing sequence
for I(p). In particular, we can apply the compactness results in [1, Theorem 3] and [3, Theorem
4] to this sequence. This provides a sequence of real numbers (an)n≥0, as well as a number θ ∈ R,
such that, up to a further subsequence,

eiθ ψn(· − an, y∗) → ucp in L∞
loc(R),

1− |eiθ ψn(· − an, y∗)|2 → 1− |ucp |2 in L2(R),

eiθ ∂xψn(· − an, y∗) → u′cp in L2(R),

(38)

as n→ ∞.

We now extend the convergence to any number y ∈ T. This follows from the smoothness of the
functions ψn, which guarantees that

eiθ ψn(x− an, y)− eiθ ψn(x− an, y∗) = eiθ
∫ y

y∗

∂yψn(x− an, y
′) dy′.

Invoking the Cauchy-Schwarz inequality, we are led to∫ R

−R

∣∣eiθ ψn(x− an, y)− eiθ ψn(x− an, y∗)
∣∣2 dx ≤

∫
R×T

|∂yψn(x′, y′)|2 dx′ dy′,

11



for any positive number R. Combining the convergences in Lemma 2 with the first one in (38),
we deduce that ∫ R

−R

∣∣eiθ ψn(x− an, y)− ucp(x)
∣∣2 dx→ 0,

as n → ∞, uniformly with respect to y ∈ T. This is enough to guarantee that the functions
eiθ ψn(· − an, ·) converge to the function ucp in L2

loc(R× T).
At this stage, we again rely on the convergences in Lemma 2 in order to claim that both the
sequences (eiθ∇ψn(· − an, ·))n≥0 and (1− |ψn(· − an, ·)|2)n≥0 are bounded in L2(R× T). Up to
a further subsequence, we can find two functions Ξ ∈ L2(R× T) and η ∈ L2(R× T) such that

eiθ∇ψn(· − an, ·)⇀ Ξ in L2(R× T), and 1− |ψn(· − an, ·)|2 ⇀ η in L2(R× T), (39)

as n→ ∞. Since |z| ≤ 1+
∣∣1−|z|2

∣∣ for any complex number z, the sequence (eiθ ψn(·−an, ·))n≥0

is also bounded in H1
loc(R × T). Applying the Rellich theorem, we can find another function

ψ∞ ∈ H1
loc(R× T) such that, up to a further subsequence,

eiθ ψn(· − an, ·) → ψ∞ in Lqloc(R× T), (40)

as n → ∞, for any number 1 ≤ q < +∞. Since this convergence holds for q = 2, the function
ψ∞ is equal to ucp , and we deduce from (39) and (40) that Ξ = ∇ucp and η = 1− |ucp |2.
We now transform the weak convergences in (39) into strong convergences. We first observe that

eiθ ∂yψn(· − an, ·) → ∂yucp = 0 in L2(R× T), (41)

by (16). We next rely on the Pohozaev identity (17) in order to obtain

Eλn(ψn) =

∫
R×T

|eiθ ∂xψn(x− an, y)|2 dx dy

= λ2n

∫
R×T

|∂yψn|2 +
1

2

∫
R×T

(
1− |ψn(x− an, y)|2

)2
dx dy.

In view of Lemma 2, we note that Eλn(ψn) → I(p) as n→ ∞. Combining with (16), we are led
to∫

R×T
|eiθ ∂xψn(x−an, y)|2 dx dy → I(p), and

1

2

∫
R×T

(
1−|ψn(x−an, y)|2

)2
dx dy → I(p), (42)

as n → ∞. We finally express the quantity I(p) in terms of the travelling-wave profile ucp .
Recall that this profile solves (1) with c = cp. We multiply this equation by the derivative u′cp
and integrate it taking into account the exponential decay of the functions u′cp and 1 − |ucp |2.
This gives

1

2
|u′cp |

2 =
1

4

(
1− |ucp |2

)2
.

It is then enough to invoke Proposition 1 in order to obtain

I(p) = E(ucp) =

∫
R
|u′cp |

2 =
1

2

∫
R

(
1− |ucp |2

)2
.

In view of (42), we deduce that∥∥eiθ ∂xψn(· − an, ·)
∥∥
L2(R×T) →

∥∥u′cp∥∥L2(R×T),

and ∥∥1− |ψn(· − an, ·)|2
∥∥
L2(R×T) →

∥∥1− |ucp |2
∥∥
L2(R×T),

12



as n→ ∞. Combining with (41), we conclude that the convergences in (39) are actually strong.

In order to complete the proof of Proposition 3, it only remains to establish that∫
R×T

ηcp
∣∣eiθ ψn(· − an, ·)− ucp

∣∣2 → 0, (43)

as n→ ∞. Consider a positive number R and write the decomposition∫
R×T

ηcp
∣∣eiθ ψn(· − an, ·)− ucp

∣∣2 = IR + JR, (44)

with
IR :=

∫
(−R,R)×T

ηcp
∣∣eiθ ψn(· − an, ·)− ucp

∣∣2 → 0, (45)

as n→ ∞ by (40), and

JR :=

∫
(−R,R)c×T

ηcp
∣∣eiθ ψn(· − an, ·)− ucp

∣∣2.
Concerning this integral, we have

JR ≤ 2

∫
(−R,R)c×T

ηcp

(
2 +

∣∣eiθ ψn(· − an, ·)
∣∣2 − 1 +

∣∣ucp∣∣2 − 1
)
. (46)

Since ηcp ∈ L2(R× T), we infer from (39) that∫
(−R,R)c×T

ηcp

(
2 +

∣∣eiθ ψn(· − an, ·)
∣∣2 − 1 +

∣∣ucp∣∣2 − 1
)
→ 2

∫
(−R,R)c×T

ηcp
∣∣ucp∣∣2.

in the limit n → ∞. The right-hand side of this limit can be made as small as necessary for R
large enough. Combining with (44), (45) and (46) is enough to complete the proof of (43). This
concludes the proof of Proposition 3.

3.4 Proof of Proposition 4 for p 6= π
2

The proof of Proposition 4 is based on a coercivity estimate related to the orbital stability of
the dark solitons in dimension one. The technical derivation of this estimate turns out to be
different for the grey solitons on the one hand, and the black soliton on the other hand. This
claim originates in the fact that we can use the hydrodynamical framework for handling the grey
solitons, which is no more possible for the black soliton. This is the reason why we split the
proof of Proposition 4 into two parts dealing first with the case of the grey solitons for p 6= π/2.

Given a positive number α, consider a function ψ in Vp(α). In view of Proposition B.1, we can
decompose this function as ψ = ψ̂0 + w0, with ψ̂0 ∈ X(R) and w0 ∈ H1(R × T). Moreover, it
follows from (19) that ‖w0‖H1 < α and

inf
(a,θ)∈R2

dcp
(
eiθψ̂0(· − a), ucp

)
< α.

We first use this control on the function ψ̂0 in order to estimate the difference between the energies
Eλ(ψ) and E(ψ̂0). More precisely, we show the following inequality, which is still available for
p = π/2.
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Lemma 8. Let p ∈ (−π/2, π/2], with p 6= 0. There exists a positive number αp for which we
can find a positive number Cp such that we have

Eλ(ψ) ≥ E(ψ̂0) +
1

2

∫
R×T

(
|∂xw0|2 + (λ2 − Cp)|∂yw0|2 + |w0|2

)
, (47)

for any function ψ ∈ Vp(αp).

Proof. The proof relies on the expansion of the energy Eλ(ψ) in (B.1). Due to the identity

〈ψ̂0, w0〉2C + |w0|2〈ψ̂0, w0〉C +
1

4
|w0|4 =

(
〈ψ̂0, w0〉C +

1

2
|w0|2

)2
,

we indeed deduce from (B.1) that

Eλ(ψ)− E(ψ̂0) ≥
1

2

∫
R×T

(
|∂xw0|2 + λ2|∂yw0|2

)
− 1

2

∫
R×T

|w0|2(1− |ψ̂0|2). (48)

Invoking Lemma A.2, we can find a positive number αp such that, when ψ is in Vp(αp), we get∥∥(1− |eiθψ̂0(· − a)|2)− (1− |ucp |2)
∥∥
L∞ < 1,

for given numbers (a, θ) ∈ R2. As a consequence, we obtain

1

2

∫
R×T

|w0|2(1− |ψ̂0|2) ≤
1

2

(
1 +

∥∥1− |ucp |2
∥∥
L∞

)∫
R×T

|w0|2,

and we can invoke the Poincaré-Wirtinger inequality in order to find a positive number Cp such
that

1

2

∫
R×T

|w0|2 +
1

2

∫
R×T

|w0|2(1− |ψ̂0|2) ≤
Cp
2

∫
R×T

|∂yw0|2.

Combining with (48), we obtain (47). This completes the proof of Lemma 8.

Our next goal is to provide a similar control for the momentum. When p 6= π/2, the speed cp
is different from 0, so that it follows from [1, Proposition 1] that the energy E(ucp) is strictly
less than 2

√
2/3. Combining (19) and the continuity of the Ginzburg-Landau energy E on X(R)

(see Appendix A), we can decrease, if necessary, the value of the number αp so that the energy
E(ψ̂0) is strictly less than 2

√
2/3 when ψ ∈ Vp(αp). In view of Lemma A.5, this guarantees that

the function ψ̂0 lies in the non-vanishing set NVX(R) defined in (A.1) below. As a consequence,
the set Vp(αp) is a subset of Y (R× T) and the momentum P in statement (ii) of Lemma C.1 is
well-defined on this set. Moreover, we can show

Lemma 9. Let p ∈ (−π/2, π/2), with p 6= 0. There exist a positive number αp such that∣∣P (ψ)− P (ψ̂0)
∣∣ ≤ 1

4

∫
R×T

|∂xw0|2 +
1

2π

∫
R×T

|∂yw0|2, (49)

for any function ψ ∈ Vp(αp). Moreover, when [P ](ψ) = p modulo π, the momentum P (ψ) in this
inequality is equal to

P (ψ) = p. (50)

Proof. The proof is based on the definition of the momentum P (ψ) in (C.1), which gives∣∣P (ψ)− P (ψ̂0)
∣∣ ≤ 1

2

∫
R×T

|∂xw0||w0| ≤
1

4

∫
R×T

|∂xw0|2 +
∫
R×T

|w0|2.
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Inequality (49) then follows from the Poincaré inequality. Observe that the smallness of the
number αp is only used here in order that the quantity P (ψ) and P (ψ̂0) make sense.

Concerning (50), we recall that the energy E(ψ̂0) is strictly less than 2
√
2/3 when αp is small

enough. Hence, it follows from Proposition A.6 that∣∣P (ψ̂0)
∣∣ < π

2
. (51)

Moreover, we know that [P ](ψ) = P (ψ) modulo π on the one hand, and [P ](ψ) = p modulo π
on the other hand. As a consequence, there exists an integer k ∈ Z such that P (ψ) = p+ kπ. In
view of (49), we are led to

∣∣p+ kπ − P (ψ̂0)
∣∣ ≤ 1

4
‖w0‖2H1 <

α2
p

4
.

Combining with (51), we can decrease the value of the number αp if necessary so that k = 0 and
P (ψ) = p. This completes the proof of Lemma 9.

Collecting (47) and (49), we obtain

Eλ(ψ)−cpP (ψ) ≥ E(ψ̂0)−cpP (ψ̂0)+
1

2

∫
R×T

((
1−|cp|

2

)
|∂xw0|2+

(
λ2−Cp−

|cp|
π

)
|∂yw0|2+|w0|2

)
.

(52)
Since |cp| <

√
2, the last term in this inequality is non-negative for λ2 > Cp +

√
2/π. Under this

condition, it vanishes if and only if w0 is identically equal to 0.

Our goal is now to control from below the term E(ψ̂0) − cpP (ψ̂0). Since the function ψ̂0 is in
NVX(R), we can rely on the hydrodynamical formulation ψ̂0 = ρ0e

iθ0 and analyze the quantities
E(ψ̂0) and P (ψ̂0) in terms of the variables η0 := 1−ρ20 and v0 := θ′0. In view of (A.2) and (A.5),
the energy E(ψ̂0) and the momentum P (ψ̂0) are then given by

E
(
ψ̂0

)
= E(η0, v0) :=

1

8

∫
R

(η′0)
2

1− η0
+

1

2

∫
R
(1− η0)v

2
0 +

1

4

∫
R
η20,

and
P
(
ψ̂0

)
= P (η0, v0) :=

1

2

∫
R
η0v0.

Recall also that the pair (η0, v0) belongs to the non-vanishing set NV (R) defined in (A.3).

Similarly, we can lift the profile ucp as ucp = ρcpe
iθcp and introduce the corresponding variables

ηcp := 1 − ρ2cp and vcp := θ′cp , which are also in NV (R). With this notation at hand, we can
consider the neighbourhoods of the pair (ηcp , vcp) given by

Up(β) :=
{
(η, v) ∈ NV (R) s.t. inf

a∈R

(
‖η0(· − a)− ηcp‖2H1 + ‖v0(· − a)− vcp‖2L2

)
< β2

}
, (53)

for any positive number β. We first show that the pair (η0, v0) lies in one of these neighbourhoods
when ψ̂0 is in Vp(αp). More precisely, we show

Lemma 10. Given any positive number β, there exists a positive number α ≤ αp such that

(η0, v0) ∈ Up(β),

for any function ψ ∈ Vp(α).
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Proof. Consider a positive number α such that α ≤ αp. Under this condition, the function ψ̂0 is
in NVX(R) when ψ belongs to Vp(α). In particular, the functions η0 and v0 are well-defined. In
view of (19), we can also find numbers (a, θ) ∈ R2 such that dcp(eiθψ̂0(· − a), ucp) < α, so that
by (A.8), ∥∥η0(· − a)− ηcp

∥∥
L2 ≤ dcp

(
eiθψ̂0(· − a), ucp

)
< 2α. (54)

We next write

η′0(· − a)− η′cp = −2〈ψ̂′
0(· − a)− u′cp , ψ̂0(· − a)〉C − 2〈u′cp , ψ̂0(· − a)− ucp〉C.

Invoking Lemma A.2, we can decrease the value of the number α if necessary, so that∥∥ψ̂0

∥∥2
L∞ ≤ 1 +

∥∥ucp∥∥2L∞ . (55)

Moreover, it follows from (1) and (18) that

∣∣u′cp∣∣2 = η2cp
2

≤
2− c2p

4
ηcp . (56)

Hence, we are led to∥∥η′0(· − a)− η′cp
∥∥
L2 ≤ 2

(
1 +

∥∥ucp∥∥2L∞

) 1
2
∥∥ψ̂′

0(· − a)− u′cp
∥∥
L2 +

(
2− c2p

) 1
2

∥∥∥η 1
2
cp

(
ψ̂0(· − a)− ucp

)∥∥∥
L2
,

and there exists a positive number Cp, depending only on p, such that∥∥η′0(· − a)− η′cp
∥∥
L2 ≤ Cp dcp

(
eiθψ̂0(· − a), ucp

)
< 2Cpα. (57)

Similarly, we write

v0(· − a)− vcp =
1

|ψ0(· − a)|2

(〈
i(u′cp − ψ̂0(· − a)′), ψ̂0(· − a)

〉
C +

〈
iu′cp , ucp − ψ̂0(· − a)

〉
C

+

〈
iu′cp , ucp

〉
C

|ucp |2
(
ηcp − η0(· − a)

))
.

Invoking again Lemma A.2 and using (2), we can decrease the value of the number α if necessary,
so that

inf
x∈R

|ψ̂0(x− a)|2 ≥ inf
x∈R

|ucp(x)|2 −
c2

4
=
c2

4
.

Combining with (55) and (56), we deduce that∥∥v0(· − a)− vcp
∥∥
L2 ≤ Cp dcp

(
eiθψ̂0(· − a), ucp

)
< 2Cpα,

for a further positive number Cp. In view of (54) and (57), we conclude that∥∥η0(· − a)− ηcp
∥∥2
H1 +

∥∥v0(· − a)− vcp
∥∥2
L2 < (4 + 8C2

p)α
2.

It is then enough to fix the choice of α ≤ β/(4 + 8Cp)
1/2 in order to complete the proof of

Lemma 10.

The sets Up(β) were already introduced in [4] in order to prove the orbital stability of chains of
N solitons. All the results in [4] are stated for an arbitrary integer N ≥ 1, and in particular,
hold for a single soliton. We now explicit the results in [4] on which we rely for completing the
proof of Proposition 4.

We begin by [4, Proposition 2], which provides a decomposition of each pair (η0, v0) in Up(β) as
the sum of a modulated soliton plus a remainder term satisfying suitable orthogonality conditions.
More precisely, we can rephrase this proposition as
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Lemma 11 ([4]). There exist two positive numbers β1 and C1, depending only on cp, and two
functions a ∈ C1(Up(β1),R) and c ∈ C1(Up(β1), (−

√
2, 0) ∪ (0,

√
2)) such that, for any pair

(η0, v0) ∈ Up(β1), the function

ε := (εη, εv) :=
(
η0(· − a)− ηc, v0(· − a)− vc

)
, (58)

with a := a(η0, v0) and c := c(η0, v0), satisfies the orthogonality conditions〈
(εη, εv), (η

′
c, v

′
c)
〉
L2×L2 = dP (ηc, vc)(εη, εv) = 0. (59)

Moreover, if there exist numbers a∗ ∈ R and β ≤ β1 such that

‖(η0(· − a∗), v0(· − a∗))− (ηcp , vcp)‖H1×L2 < β,

then ∥∥ε∥∥
H1×L2 +

∣∣c− cp
∣∣+ ∣∣a− a∗

∣∣ ≤ C1β. (60)

We use the decomposition in Lemma 11 to expand the quantities E(η0, v0) and P (η0, v0) at
second order. Using the invariance by translation of the energy E(η0, v0), we first obtain

E
(
η0, v0

)
= E

(
(ηc, vc) + ε

)
= E

(
ηc, vc

)
+ dE

(
ηc, vc

)
(ε) +

1

2
d2E

(
ηc, vc

)
(ε, ε) +Rc(ε), (61)

with c = c(η0, v0). In this identity, we have set

dE
(
ηc, vc

)
(ε) :=

1

2

∫
R

( (η′c)
2εη

4(1− ηc)2
+

η′cε
′
η

2(1− ηc)
− v2cεη + 2(1− ηc)vcεv + ηcεη

)
,

d2E
(
ηc, vc

)
(ε, ε) :=

∫
R

( (ε′η)
2

4(1− ηc)
+

η′cεηε
′
η

2(1− ηc)2
+

(η′c)
2ε2η

4(1− ηc)3
− 2vcεηεv + (1− ηc)ε

2
v +

1

2
ε2η

)
,

and

Rc(ε) :=
1

2

∫
R

( (ε′η)
2εη

4(1− ηc)(1− ηc − εη)
+

η′cε
2
ηε

′
η

2(1− ηc)2(1− ηc − εη)
+

(η′c)
2ε3η

4(1− ηc)3(1− ηc − εη)
−εηε2v

)
.

Similarly, the invariance by translation of the momentum P (η0, v0) provides

P
(
η0, v0

)
= P

(
(ηc, vc) + ε

)
= P

(
ηc, vc

)
+ dP

(
ηc, vc

)
(ε) +

1

2
d2P

(
ηc, vc

)
(ε, ε), (62)

with
dP

(
ηc, vc

)
(ε) :=

1

2

∫
R

(
ηcεv + vcεη

)
, and d2P

(
ηc, vc

)
(ε, ε) :=

∫
R
εηεv. (63)

The previous identities give an expansion at second order of the quantity E(η0, v0)− cpP (η0, v0).
We now estimate each term in this expansion in order to bound from below this quantity.

Lemma 12. Consider a function (η0, v0) ∈ Up(β1), where β1 is the positive number in Lemma 11,
and set ε =

(
η0(· − a)− ηc, v0(· − a)− vc

)
, with a = a(η0, v0) and c = c(η0, v0). There exist two

positive numbers β2 ≤ β1 and K2, depending only on cp, such that

E
(
ηc, vc

)
− cpP

(
ηc, vc

)
≥ E

(
ucp

)
− cpP

(
ucp

)
−K2

∣∣c− cp|2, (64)

dE
(
ηc, vc

)
(ε)− cp dP

(
ηc, vc

)
(ε) = 0, (65)

d2E
(
ηc, vc

)
(ε, ε)− cp d

2P
(
ηc, vc

)
(ε, ε) ≥ K2

(∥∥ε∥∥2
H1×L2 −

∣∣c− cp
∣∣2), (66)

and
Rc(ε) ≥ −K2

∥∥ε∥∥3
H1×L2 , (67)

when (η0, v0) ∈ Up(β2).
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Proof. Concerning (64), recall that the modulated speed c lies in (−
√
2, 0)∪(0,

√
2) by Lemma 11.

Hence, it follows from [1, Proposition 1] that the energy E(ηc, vc) and the momentum P (ηc, vc)
are given by

E(ηc, vc) =
1

3

(
2− c2

) 3
2 , and P (ηc, vc) = sign(c) Ξ(|c|), (68)

with
Ξ(c) :=

π

2
− arctan

(
c√

2− c2

)
− c

2

√
2− c2, (69)

for 0 ≤ c <
√
2. In view of (60), we can decrease if necessary the value of the number β1 such

that all the modulated speeds c corresponding to pairs in Up(β1) are in a compact subset of
the interval, either (−π/2, 0), or (0, π/2), containing the speed cp. In this case, we can use the
smoothness of the maps c 7→ E(ηc, vc) and c 7→ P (ηc, vc) on both these intervals in order to find
a positive number K, depending only on cp, such that

E
(
ηc, vc

)
− cpP

(
ηc, vc

)
−
(
E
(
ηcp , vcp

)
− cpP

(
ηcp , vcp

))
≥ d

dc

(
E
(
ηc, vc

))
|c=cp

− cp
d

dc

(
P
(
ηc, vc

))
|c=cp

−K
(
c− cp

)2
.

Since E(ηcp , vcp) − cpP (ηcp , vcp) = E(ucp) − cpP (ucp) by definition, the estimate in (64) follows
from the property that

d

dc

(
E
(
ηc, vc

))
|c=cp

= −cp
(
2− c2p

) 1
2 = cp

d

dc

(
P
(
ηc, vc

))
|c=cp

,

which results from the fact that
Ξ′(c) = −

√
2− c2. (70)

For the proof of (65), we first use the second orthogonality condition in (59) in order to write

dE
(
ηc, vc

)
(ε)− cp dP

(
ηc, vc

)
(ε) = dE

(
ηc, vc

)
(ε) = dE

(
ηc, vc

)
(ε)− c dP

(
ηc, vc

)
(ε).

We next rephrase the equation satisfied by the profile uc in terms of the hydrodynamic pair
(ηc, vc). In view of (1), we are led to the system

η′′c
2(1−ηc) +

(η′c)
2

4(1−ηc)2 + cvc + v2c − ηc = 0,

(1− ηc)vc =
c
2ηc.

It is then enough to multiply the first equation in this system by εη, the second one by εv, and
to integrate by parts in order to obtain

dE
(
ηc, vc

)
(ε)− c dP

(
ηc, vc

)
(ε) = 0,

and therefore, (65).

We now turn to (66). We rewrite the second order term as

d2E
(
ηc, vc

)
(ε, ε)− cp d

2P
(
ηc, vc

)
(ε, ε) =d2E

(
ηc, vc

)
(ε, ε)− c d2P

(
ηc, vc

)
(ε, ε)

+
(
c− cp

)
d2P

(
ηc, vc

)
(ε, ε).

(71)

In view of (63), we have

(
c− cp

)
d2P

(
ηc, vc

)
(ε, ε) ≥ −

∣∣c− cp
∣∣∥∥ε‖2H1×L2 ≥ − 1

2δ

(
c− cp

)2 − δ

2

∥∥ε‖4H1×L2 , (72)
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for any positive number δ. Recall that the function ε satisfies the two orthogonal conditions
in (59), whereas by (60), the modulated speeds c lie in a compact subset of the interval (−π/2, 0)
or (0, π/2), containing the speed cp. As a consequence, we can apply [4, Proposition 1] in order
to find a positive number K, depending only on cp, such that

d2E
(
ηc, vc

)
(ε, ε)− c d2P

(
ηc, vc

)
(ε, ε) ≥ K

∥∥ε‖2H1×L2 .

Combining with (71) and (72), we obtain

d2E
(
ηc, vc

)
(ε, ε)− cp d

2P
(
ηc, vc

)
(ε, ε) ≥ K

∥∥ε‖2H1×L2 −
1

2δ

(
c− cp

)2 − δ

2

∥∥ε‖4H1×L2 .

At this stage, we can decrease if necessary the value of the number β2 so that ‖ε‖H1×L2 ≤ 1
by (60). It is then enough to choose δ = K/2 in order to obtain (66).

Finally, the estimate in (67) essentially results from the Sobolev embedding theorem. In view
of (18), there indeed exists a positive number κ ≤ 1, depending only on cp, such that

1− ηc ≥ κ,

for any modulated speed c in a compact subset of either (−π/2, 0), or (0, π/2), containing
cp. Decreasing if necessary the value of the number β2, we deduce from (60) and the Sobolev
embedding theorem that

1− ηc − εη ≥
κ

2
.

In view of (18), the derivative η′c is also uniformly bounded by a positive number depending only
on cp. Using once again the Sobolev embedding theorem, we are led to

Rc(ε) ≥ −K
κ4

∥∥ε∥∥3
H1×L2 ,

where, as before, K only depends on cp. This completes the proof of (67), as well as of Lemma 12.

We are now in position to conclude the proof of Proposition 4 when p 6= π/2.

End of the proof of Proposition 4. Going back to (61) and (62) and invoking Lemma 12, we can
write

E
(
ψ̂0

)
− cpP

(
ψ̂0

)
=E

(
η0, v0

)
− cpP

(
η0, v0

)
≥E

(
ucp

)
− cpP

(
ucp

)
+K2

(∥∥ε∥∥2
H1×L2 −

∥∥ε∥∥3
H1×L2 − 2

∣∣c− cp|2
)
.

(73)

In order to estimate the difference c − cp, we rely on the formula in (68) for the momentum
P (ηc, vc). Since the modulated speed c lives in a compact subset containing cp by (60), we infer
from (68) and (70) the existence of a positive number K, depending only on cp, such that∣∣c− cp

∣∣ ≤ K
∣∣P (ηc, vc)− P (ηcp , vcp)

∣∣. (74)

Combining (62) with (59) and (63), we check that∣∣P (ηc, vc)− P (η0, v0)
∣∣ ≤ 1

2

∥∥ε∥∥2
H1×L2 .

On the other hand, it follows from (49) and (50) that∣∣P (ηcp , vcp)− P (η0, v0)
∣∣ = ∣∣p− P (ψ̂0)

∣∣ ≤ 1

4

∥∥∇w0

∥∥2
L2 .
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Hence, we obtain ∣∣c− cp
∣∣ ≤ K

2

(∥∥ε∥∥2
H1×L2 +

∥∥∇w0

∥∥2
L2

)
.

Introducing this inequality into (73), we are led to

E
(
ψ̂0

)
−cpP

(
ψ̂0

)
≥ E

(
ucp

)
−cpP

(
ucp

)
+K2

∥∥ε∥∥2
H1×L2−K2

∥∥ε∥∥3
H1×L2−K2

∥∥ε∥∥4
H1×L2−K2

∥∥∇w0

∥∥4
L2 .

At this stage, we can again decrease the value of the number β2 so that (60) provides the
inequality

K2

∥∥ε∥∥2
H1×L2 −K2

∥∥ε∥∥3
H1×L2 −K2

∥∥ε∥∥4
H1×L2 ≥ K2

2

∥∥ε∥∥2
H1×L2 .

As a consequence, we obtain

E
(
ψ̂0

)
− cpP

(
ψ̂0

)
≥ E

(
ucp

)
− cpP

(
ucp

)
+
K2

2

∥∥ε∥∥2
H1×L2 −K2

∥∥∇w0

∥∥4
L2 .

We next invoke Lemma 10 in order to find a number α such that (η0, v0) ∈ Up(β2) when ψ ∈
Vp(α). In this case, we derive from (19) and (52) that

Eλ
(
ψ
)
− cpP

(
ψ
)
≥E

(
ucp

)
− cpP

(
ucp

)
+
K2

2

∥∥ε∥∥2
H1×L2 +

1

2

(
1− |cp|

2
− 2K2α2

)∥∥∂xw0

∥∥2
L2

+
1

2

(
λ2 − Cp −

|cp|
π

− 2K2α2
)∥∥∂yw0

∥∥2
L2 +

1

2

∥∥w0

∥∥2
L2 .

We finally fix the choice of the number αp so that 1−
√
2/2− 2K2α2

p > 0, and the choice of the
number λp so that λ2p − Cp −

√
2/π − 2K2α2

p > 0. The previous choices guarantee that

Eλ
(
ψ
)
− cpP

(
ψ
)
≥ E

(
ucp

)
− cpP

(
ucp

)
,

when ψ ∈ Vp(αp) and λ ≥ λp. This inequality is exactly (21) due to the facts that P (ψ) =
P (ucp) = p and E(ucp) = Eλ(ucp). Moreover, equality holds if and only if∥∥ε∥∥

H1×L2 =
∥∥w0

∥∥
H1 = 0.

In this case, we observe that (η0, v0) = (ηc(·+ a), vc(·+ a)), so that there exists a number θ ∈ R
for which ψ̂0 = e−iθuc(·+ a). As a consequence, we have

ψ = ψ̂0 + w0 = e−iθuc(·+ a) + 0 = e−iθuc(·+ a).

Since p = P (ψ) by Lemma 9, we deduce that P (uc) = p, and we conclude that c = cp. This
completes the proof of Proposition 4 for p 6= π/2.

3.5 Proof of Proposition 4 for p = π
2

For p = π/2, Proposition 4 also relies on a coercivity estimate, but for the black soliton u0.
This estimate was derived in [12, Proposition 1] for revisiting the orbital stability of u0. We can
rephrase it as

Lemma 13 ([12]). For ψ = u0 + ε ∈ X(R), set ηε := −2〈u0, ε〉C − |ε|2. There exists a universal
positive number Λ0 such that

E(ψ)− E(u0) ≥ Λ0

(
‖ε‖2H0

+ ‖ηε‖2L2

)
− 1

Λ0
‖ε‖3H0

, (75)

as soon as ∫
R
〈ε, u′0〉C =

∫
R
〈ε, i u′0〉C =

∫
R
〈ε, i u0〉C

(
1− |u0|2

)
= 0. (76)
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The orthogonality conditions in (76) are necessary to control one negative and two null directions
of the energy E in the neighbourhood of the black soliton u0. As in Lemma 11, they can be
imposed by introducing suitable modulation parameters related to the speed of the solitons
and their invariance by translation and phase shift. These properties were already invoked for
constructing modulation parameters in [12, Proposition 2]. Setting

U0(β) :=
{
ψ ∈ X(R) s.t. inf

(a,θ)∈R2
d0
(
eiθψ(· − a), u0

)
< β

}
,

for any positive number β, we can summarize this construction as follows.

Lemma 14 ([12]). There exist two positive numbers β0 and A0, and three continuously differen-
tiable functions a ∈ C1(U0(β0),R), ϑ ∈ C1(U0(β0),R/2πZ) and c ∈ C1(U0(β0), (−

√
2,
√
2)) such

that for any ψ ∈ U0(β0), the function

ε := eiθψ(· − a)− uc,

with a = a(ψ), θ = ϑ(ψ) and c = c(ψ), satisfies the orthogonality conditions∫
R
〈ε, u′c〉C =

∫
R
〈ε, i u′c〉C =

∫
R
〈ε, iRe(uc)〉C

(
1− |uc|2

)
= 0. (77)

Moreover, if ∥∥eiθ∗ ψ( · −a∗)− u0
∥∥
H0

≤ β,

for numbers a∗ ∈ R, θ∗ ∈ R and β ≤ β0, then,∥∥ε∥∥
H0

+
∣∣c∣∣+ ∣∣a− a∗

∣∣+ ∣∣eiθ − eiθ∗
∣∣ ≤ A0β. (78)

Remark 15. Here, the smoothness of the maps a, ϑ and c must be understood with respect to
the differential structure provided by the vector space H(R).

The orthogonality conditions in (77) differ from the ones in (76). However, a coercivity esti-
mate similar to (75) remains available under these latest conditions. Corollary 1 in [12] indeed
guarantees that

Lemma 16 ([12]). For |c| <
√
2 and ψ = uc + ε ∈ X(R), set ηε := −2〈uc, ε〉C − |ε|2. Given any

number 0 < σ <
√
2, there exists a positive number Λσ, depending only on σ, such that

E(ψ)− E(u0) ≥ Λσ
(
‖ε‖2H0

+ ‖ηε‖2L2

)
− 1

Λσ

(
c2 + ‖ε‖3H0

)
, (79)

as soon as |c| ≤ σ, and ε satisfies the orthogonality conditions in (77).

At this stage, consider a function ψ ∈ Vπ/2(α) for a number 0 < α < β0. By definition, the
function ψ̂0 is in the subset U0(α) of U0(β0). Applying Lemma 14, we can find numbers a0 ∈ R,
θ0 ∈ R and c0 ∈ (−

√
2,
√
2) such that the function ε0 := eiθ0ψ̂0(· − a0) − uc0 satisfies the

orthogonality conditions in (77). Combining (78) and (79), and decreasing if necessary the value
of the number α, we find a positive number Λα, depending only on α, such that

E
(
ψ̂0

)
− E

(
u0
)
≥ Λα

(
‖ε0‖2H0

+ ‖ηε0‖2L2

)
− c20

Λα
,

with ηε0 := −2〈uc0 , ε0〉C − |ε0|2 as before. Assuming that α ≤ απ/2, where the number απ/2 is
given by Lemma 8, we infer from this lemma that

Eλ
(
ψ
)
≥ Eλ

(
u0
)
+

1

2

∫
R×T

(
|∂xw0|2 + (λ2 −Cp)|∂yw0|2 + |w0|2

)
+Λα

(
‖ε0‖2H0

+ ‖ηε0‖2L2

)
− c20

Λα
.

(80)
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As a consequence, we are essentially reduced to control the modulated speed c0 with respect to
the various norms of the functions w0, ε0 and ηε0 . As in the previous case p 6= π/2, we derive
this control from the property that [P ](ψ) = π/2 modulo π. In this direction, our main tool is
the following consequence of Propositions 4 and 5 in [12].

Lemma 17 ([12]). There exist two positive numbers β1 < β0 and A1 such that any function
ψ ∈ U0(β1) satisfies

[P ](ψ) = [P ](uc)−
∫
R
〈iu′c, ε〉C +Rc(ε) modulo π, (81)

with ∣∣Rc(ε)∣∣ ≤ A1

(
‖ε‖2H0

+ ‖ηε‖2L2

)
. (82)

In the previous formulae, we have set, as before, ε = eiθψ(· − a) − uc, with a = a(ψ), θ = ϑ(ψ)
and c = c(ψ), as well as ηε := −2〈uc, ε〉C − |ε|2.

With Lemma 17 at hand, we are in position to conclude the proof of Proposition 4 for p = π/2.

End of the proof of Proposition 4 for p = π/2. Decreasing if necessary the value of α, we can
apply Lemma 17 to the function ψ̂0. In view of the second orthogonality condition in (77), this
provides the identity

[P ]
(
ψ̂0

)
= [P ]

(
uc0

)
+Rc0

(
ε0
)

modulo π,

with Rc0(ε0) satisfying (82) for ε = ε0 and ηε = ηε0 . Going to (C.1), we deduce that

[P ]
(
ψ
)
− [P ]

(
uc0

)
=

1

2

∫
R×T

〈i∂xw0, w0〉C +Rc0
(
ε0
)

modulo π. (83)

Recall now that [P ](ψ) = π/2 = Ξ(0) modulo π, while the value modulo π of [P ](uc0) is equal
to sign(c0) Ξ(|c0|) by [1, Proposition 1]. Here, Ξ refers to the function in (69). Moreover, for α
small enough, the right-hand side of (83) is small by (82), so as the modulated speed c0 by (78).
As a consequence, we derive from the identity modulo π in (83) that∣∣∣Ξ(0)− Ξ(|c0|)

∣∣∣ = ∣∣∣∣12
∫
R×T

〈i∂xw0, w0〉C +Rc0
(
ε0
)∣∣∣∣.

Using (70), we can argue as for (74) in order to derive from (78) and (82) the existence of a
positive number Aα, depending only on α, such that

|c0| =
∣∣0− |c0|

∣∣ ≤ Aα

(
‖ε0‖2H0

+ ‖ηε0‖2L2 + δ‖w0‖2L2 +
1

δ
‖∂xw0‖2L2

)
.

for any positive number δ. It then remains to introduce this inequality into (80) and to choose
the number δ large enough in order to deduce from the Poincaré inequality that

Eλ
(
ψ
)
≥ Eλ

(
u0
)
+ Λ

(
‖ε0‖2H0

+ ‖ηε0‖2L2 + ‖w0‖2H1

)
≥ Eλ

(
u0
)
,

for α small enough, λ large enough, and a further positive number Λ, depending only on α and
λ. This concludes the proof of (21).

Moreover, this inequality is an equality if and only if ε0 = 0 and w0 = 0, that is if and only if
ψ = e−iθ0uc0(·+ a0). In view of (68) and (70), the only possibility for the untwisted momentum
[P ](ψ) to be equal to π/2 modulo π is that c0 = 0. In conclusion, equality can only hold if
ψ = e−iθ0u0(·+ a0). This completes the proof of Proposition 4 for p = π/2.
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3.6 Proof of Lemma 5

Consider a function ψ ∈ X(R×T) such that [P ](ψ) = p modulo π. Given two positive numbers
λ1 and λ2, with λ1 < λ2, we have

Eλ1(ψ) ≤ Eλ2(ψ) ≤
(λ2
λ1

)2
Eλ1(ψ).

In view of (10), we obtain

Iλ1(p) ≤ Iλ2(p) ≤
(λ2
λ1

)2
Iλ1(p),

which is enough to guarantee that the map λ 7→ Iλ(p) is non-decreasing and continuous on R∗
+.

Concerning the proof of (22), we rely on the scaling

ψL(x, y) = ψ(x, λy), (84)

which transforms a function ψ ∈ X(R × T) in a function ψL ∈ X(R × TL). Here, we have set
L = 1/λ. The notation TL refers to the torus of size L and the energy set X(R× TL) is defined
according to (8), with T replaced by TL. In the limit λ→ 0, the length L tends to +∞ and the
minimization problem Iλ(p) can be related to the problem of minimizing the Ginzburg-Landau
energy in the whole plane R2 for a fixed large momentum.

Indeed, we can compute

E
(
ψL

)
:=

1

2

∫
R×TL

|∇ψL|2 +
1

4

∫
R×TL

(
1− |ψL|2

)2
= LEλ(ψ). (85)

Going to Lemma C.1, we also check that the definition of the untwisted momentum on the set
X(R×T) extends literally to the set X(R×TL), up to the fact that this quantity is now valued
into R/πLZ. Moreover, we can derive from Lemma C.1 that the untwisted momentum [P ]L(ψL)
is equal to

[P ]L(ψL) = L[P ](ψ) modulo πL. (86)

As a consequence, we obtain

Iλ(p) =
1

L
inf

{
E(ψL) : ψL ∈ X(R× TL) s.t. [P ]L(ψL) = pL modulo πL

}
.

At least formally, the previous infimum is related to the limit q → +∞ of the minimal value of
the Ginzburg-Landau energy in R2 with fixed momentum equal to q. This latter minimization
problem was solved in [2]. It follows from [6] that the limit q → +∞ of this problem is divergent
as 2π ln(q). This asymptotics is based on the property that the corresponding minimizer is a
pair of vortices in uniform translation. We are now going to use this special configuration as a
test function in order to show (22).

In order to clarify the construction, we now identify the space R2 to the complex plane C by
setting z = x+ iy in the sequel. We introduce the complex-valued function ξ defined on the disc
D(0, 2) := {z ∈ C s.t. |z| < 2} by

ξ(z) =
z − i

|z − i|
z + i

|z + i|
eiφ(z). (87)

In this expression, φ refers to a real-valued harmonic function on D(0, 2) such that ξ = 1 on the
circle ∂D(0, 2). We can check that the value of φ can be fixed so that

φ(z) = arctan
( 2Re(z)
1− |z|2

)
, (88)
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for any z ∈ ∂D(0, 2). Observe that φ is even with respect to the variable Im(z). Observe also
that f has exactly two vortices with opposite degrees at the points ±i. Given a number R ≥ 1,
we next introduce the rescaled and regularized version ξR of ξ given by

ξR(z) =


1 if |z| ≥ 2R,

|z ± iR| ξ
(
z
R

)
if |z ± iR| < 1,

ξ
(
z
R

)
otherwise.

(89)

The function ξR is well-defined and continuous on R2. Given a number L ≥ 4R, we can consider
its restriction to the set {z ∈ C : |Im(z)| ≤ L/2} and extend it as a L-periodic function with
respect to the variable y. Denote by ψL the corresponding extension and define a function
ψ : R× T → C according to the scaling in (84).

The extension ψL belongs to H1
loc(R × TL), where this set is defined as in (6), with 1-periodic

functions replaced by L-periodic functions. It is even with respect to the variable y and identically
equal to 1 outside the disc D(0, 2R). We now estimate the value of its energy E(ψL). A direct
computation first provides

1

4

∫
R×TL

(
1− |ψL|2

)2
=

1

2

∫
|z−iR|<1

(
1− |z − iR|2

)2
dx dy =

π

6
. (90)

Concerning the gradient ∇ψL, we next check that

|∇ψL(z)|2 =1 +
4R2

|z + iR|2
+

1

R2

∣∣∣∇φ( z
R

)∣∣∣2|z − iR|2 − 2

R
∂xφ

( z
R

)(
R− y + (y +R)

|z − iR|2

|z + iR|2
)

− 2

R
∂yφ

( z
R

)(
x− x

|z − iR|2

|z + iR|2
)
,

for any |z − iR| < 1. Using the inequality 2ab ≤ a2 + b2 and the fact that |z + iR| ≥ R ≥ 1 for
y ≥ 0, we can bound this quantity by

|∇ψL(z)|2 ≤ 13 +
2

R2

∣∣∣∇φ( x
R

)∣∣∣2,
when |z − iR| < 1. Hence, we obtain

1

2

∫
|z−iR|<1

|∇ψL|2 ≤
13π

2
+

∫
|z−i|<1/R

|∇φ|2. (91)

By symmetry with respect to the axis x, the same inequality is true replacing |z − iR| < 1 by
|z + iR| < 1 in the left-hand side, and |z − i| < 1/R by |z + i| < 1/R in the right-hand side.
Similarly, we compute

|∇ψL(z)|2 =
1

|z − iR|2
+

1

|z + iR|2
+ 2

R2 − |z|2

|z − iR|2|z + iR|2
+

1

R2

∣∣∣∇φ( z
R

)∣∣∣2
+

2

R
∂xφ

( z
R

)( y −R

|z − iR|2
− y +R

|z + iR|2
)
+

2

R
∂yφ

( z
R

)( x

|z + iR|2
− x

|z − iR|2
)
,

for any z ∈ ωR := {z ∈ D(0, 2R) s.t. |z − iR| > 1 and |z + iR| > 1
}
. As a consequence, we can

write
1

2

∫
ωR

|∇ψL(z)|2 ≤ I1 +
1

2

∫
ω1

|∇φ|2 + I2, (92)

with ω1 := {z ∈ D(0, 2) s.t. |z − i| > 1/R and |z + i| > 1/R
}
. In this inequality, we have set

I1 :=
1

2

∫
ωR

( 1

|z − iR|2
+

1

|z + iR|2
+ 2

R2 − |z|2

|z − iR|2|z + iR|2
)
dx dy,
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and

I2 :=
1

R

∫
ωR

(
∂xφ

( z
R

)( y −R

|z − iR|2
− y +R

|z + iR|2
)
+ ∂yφ

( x
R

)( x

|z + iR|2
− x

|z − iR|2
))

dx dy.

We first estimate the integral I1 using the fact that its integrand is symmetric with respect to
the variable y. Setting ω+

R := {z ∈ ωR s.t. y ≥ 0}, we combine the inequality |z + iR| ≥ R ≥ 1
for y ≥ 0 and the identity R2 − |z|2 = 2R(R− y)− |z − iR|2 in order to get

I1 =

∫
ω+
R

( 1

|z − iR|2
− 1

|z + iR|2
+

4R(R− y)

|z − iR|2|z + iR|2
)
dx dy

≤
∫
ω+
R

( 1

|z − iR|2
+

4

R|z − iR|

)
dx dy.

When z ∈ ω+
R and |z − iR| ≥ R, we have

1

|z − iR|2
+

4

R|z − iR|
≤ 5

R2
,

so that
I1 ≤ 5π +

∫
D(0,R)\D(0,1)

( 1

|z|2
+

4

R|z|

)
dx dy ≤ 2π ln(R) + 13π. (93)

We next integrate by parts the integral I2 in order to obtain

I2 =

∫
∂ωR

(
νx(z)

( y −R

|z − iR|2
− y +R

|z + iR|2
)
+ νy(z)

( x

|z + iR|2
− x

|z − iR|2
))

φ
( z
R

)
dγ(z),

where ν(z) = (νx(z), νy(z)) is the outward unit normal vector to ∂ωR and dγ is the infinitesimal
length element of the curve ∂ωR. Recall at this stage that the function φ is harmonic on the disc
D(0, 2). In view of (88), it follows from the maximum principle that

‖φ‖L∞(D(0,2)) ≤
π

2
, (94)

so that
I2 ≤

π

2

(∫
∂D(0,2R)

4

R
dγ(z) + 2

∫
∂D(0,1)

4 dγ(z)

)
≤ 16π2.

Combining with (91), (92) and (93), we finally get

1

2

∫
R×TL

|∇ψL|2 ≤ 2π ln(R) + 16π2 + 26π +

∫
D(0,2)

|∇φ|2. (95)

In view of (90), we deduce the existence of a universal positive constant C such that

E(ψL) ≤ 2π ln(R) + C. (96)

Note in particular that the function ψL ∈ X(R × TL), so that we are allowed to define its
untwisted momentum [P ]L(ψL) according to Lemma C.1.

In order to compute this quantity, we first rely on (89) from which we derive that the function
[ψ̂L]0 is identically equal to 1 for |x| ≥ R. As a consequence, the function θ0 = 0 is one of its
phase functions on the intervals I±R . In view of (A.6) and (C.1), we obtain

Pθ0(ψL) =
1

2

∫
R
〈i[ψ̂L]′0, [ψ̂L]0〉C +

1

2

∫
R×TL

〈i∂xw0, w0〉C,
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with w0 = ψL− [ψ̂L]0 as before. Due to the orthogonality of the functions [ψ̂L]0 and w0, and the
compactly supported nature of their derivatives, the previous formula can be simplified as

Pθ0(ψL) =
1

2

∫
R×TL

〈i∂xψL, ψL〉C.

Going back to (89), we derive from the local integrability of the map z 7→ y/|z|2 that

Pθ0(ψL) = JR + J+ + J−, (97)

where we have set

JR :=
1

2

∫
D(0,2R)

(
− y −R

|z − iR|2
+

y +R

|z + iR|2
− 1

R
∂xφ

( z
R

))
dx dy,

and
J± :=

1

2

∫
D(±iR,1)

(
1− |z ∓ iR|2

)( y −R

|z − iR|2
− y +R

|z + iR|2
+

1

R
∂xφ

( z
R

))
dx dy. (98)

Integrating by parts, we check that

1

2R

∫
D(±iR,1)

(
1− |z ∓ iR|2

)
∂xφ

( z
R

)
dx dy =

∫
D(±iR,1)

xφ
( z
R

)
dx dy,

so that by (94), we obtain

∣∣J±∣∣ ≤ 1

2

∫
D(0,1)

dx dy

|z|
+
π

2
+
π2

2
≤ 3π

2
+
π2

2
. (99)

On the other hand, a direct scaling provides

JR = RJ1 :=
R

2

∫
D(0,2)

(
− y − 1

|z − i|2
+

y + 1

|z + i|2
− ∂xφ(z)

)
dx dy. (100)

Applying the Fubini theorem, we can write the integral J1 as

J1 =
1

2

∫ 2

−2
j1(y) dy,

with

j1(y) =

∫ √
4−y2

−
√

4−y2

(
− y − 1

x2 + (y − 1)2
+

y + 1

x2 + (y + 1)2
− ∂xφ(x, y)

)
dx,

for y 6= ±1. In view of (88), the integrals j1(y) are equal to

j1(y) = −2 arctan
(√4− y2

y − 1

)
+ 2arctan

(√4− y2

y + 1

)
+ 2arctan

(2√4− y2

3

)
.

At this stage, we can check that
j′1(y) = 0,

when y 6= ±1, so that

j1(y) =


limy→2 j1(y) = 0 for 1 < y ≤ 2,

limy→1− j1(y) = 2π for − 1 < y < 1,

limy→−2 j1(y) = 0 for − 2 ≤ y < −1.
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By the Fubini theorem, the integral J1 is then equal to J1 = 2π, so that JR = 2πR. In view
of (97) and (99), we obtain ∣∣Pθ0(ψL)− 2πR

∣∣ ≤ 3π + π2. (101)

On the other hand, we can derive from (97), (98) and (100) that the map R 7→ Pθ0(ψL) is
continuous on [1, 4L]. In view of (101), the range of this function covers the interval [5π +
π2, πL/2 − 3π − π2]. In particular, given a fixed number in (0, π/2), we can find, for L large
enough, a positive number RL such that [P ]L(ψL) = Pθ0(ψL) = pL modulo Lπ, and∣∣∣RL − pL

2π

∣∣∣ ≤ 3 + π

2
.

In this case, we deduce from (95) that

E(ψL) ≤ 2π ln(L) + 2π ln(p) + C,

where C is a further universal constant. As a consequence, the function ψ corresponding to ψL
by the scaling in (84) lies in X(R × T), with [P ](ψ) = p modulo π by (86). Using (85), we are
led to

Iλ(p) ≤ Eλ(ψ) ≤
1

L

(
2π ln(L) + 2π ln(p) + C

)
,

so that Iλ(p) tends to 0 when λ = 1/L→ 0.

Observe next that
[P ](ψ) = −p modulo π,

so that similarly,

Iλ(−p) ≤ Eλ(ψ) = Eλ(ψ) ≤
1

L

(
2π ln(L) + 2π ln(p) + C

)
,

and again for p ∈ (−π/2, 0), Iλ(p) tends to 0 when λ→ 0. This completes the proof of Lemma 5
when p 6= π/2.

For p = π/2, it follows from the non-negativity and the Lipschitz continuity of the function Iλ
that

0 ≤ Iλ
(π
2

)
≤ Iλ(p) +

√
2
(π
2
− p

)
,

for any 0 < p < π/2. In the limit λ→ 0, this gives

0 ≤ lim inf
λ→0

Iλ
(π
2

)
≤ lim sup

λ→0
Iλ

(π
2

)
≤

√
2
(π
2
− p

)
.

Letting p→ π/2, we conclude that the quantity Iλ(π/2) also tends to 0 as λ→ 0. This completes
the proof of Lemma 5.

A Energy set and momentum in dimension one

In this section, we collect useful results concerning the energy set X(R) and the momentum P
in dimension one. In particular, we recall several statements established in [1, 11, 5, 12].

In dimension one, the energy set is defined as

X(R) =
{
ψ ∈ H1

loc(R) : ψ′ ∈ L2(R) and 1− |ψ|2 ∈ L2(R)
}
.
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As a consequence of the Sobolev embedding theorem, a function ψ in this set is actually 1/2-
Hölder continuous on R. Moreover, this function is bounded (see [11]), so that the energy set is
a subset of the Zhidkov space

Z1(R) :=
{
ψ ∈ C0

b (R) : ψ′ ∈ L2(R)
}
.

This property guarantees that the function η := 1 − |ψ|2 belongs to the Sobolev space H1(R),
so that it owns a vanishing limit at ±∞. In particular, we can find a positive number R such
that ρ(x) := |ψ(x)| ≥ 1/2 for |x| ≥ R. We can therefore lift the function ψ as ψ = ρeiθ on
both the intervals I−R = (−∞,−R] and I+R = [R,+∞). The phase function θ is continuous on
these intervals, with a derivative θ′ in L2(I±R ). Note that this phase function is defined up to two
factors in 2πZ, one on each interval I±R .

This double indeterminacy is removed when the function ψ does not vanish on the whole line,
that is belongs to the non vanishing energy set

NVX(R) :=
{
ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| > 0

}
. (A.1)

In this case, the phase function θ is defined up to only one phase factor in 2πZ. Moreover, the
energy E(ψ) is given by the hydrodynamical expression

E(ψ) =
1

8

∫
R

(η′)2

1− η
+

1

2

∫
R
(1− η)v2 +

1

4

∫
R
η2, (A.2)

in which we have set v := θ′. In particular, there is a natural correspondence between the fact
that the function ψ is in NVX(R) and the property that the pair (η, v) lies in

NV (R) :=
{
(η, v) ∈ H1(R)× L2(R) s.t. inf

x∈R
η(x) < 1

}
. (A.3)

Concerning the definition of the momentum P , it is formally given by the integral

1

2

∫
R
〈i∂xψ,ψ〉C.

Due to a possible lack of integrability at infinity, this quantity is not necessarily well-defined
when ψ ∈ X(R). In order to give it a rigorous meaning, we assume first that the function ψ can
be lifted as ψ = ρeiθ and write the hydrodynamical expression

1

2
〈i∂xψ,ψ〉C = −1

2
ρ2θ′ =

1

2
ηθ′ − 1

2
θ′. (A.4)

When (η, θ′) ∈ NV (R), the function ηθ′ is integrable on R, but in general, the derivative θ′ is
not. We refer to [1, 3] for a discussion about several ways to by-pass this difficulty. A convenient
way to define the momentum, in the sense that the quantity defined in this way will satisfy the
natural properties of the momentum, is simply to drop the term containing the derivative θ′ and
to set

P (ψ) =
1

2

∫
R
ηθ′. (A.5)

Once the decision is made to choose this definition, it is necessary to extend it to functions which
can vanish. A natural way to perform this extension is to rely on the property that the functions
ψ ∈ X(R) can be lifted at least on intervals of the form I±R for R large enough. Hence, we can
expect that the previous formula for the momentum will be available on these intervals.

In order to check this claim, we introduce a smooth cut-off function χ : R → [0, 1] with χ(x) = 0
for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2, and we set χr(x) = χ(x/r) for any positive number r.
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When the function ψ does not vanish on R, the expression for its momentum in (A.5) can be
rephrased as

P (ψ) = Pθ(ψ) :=
1

2

∫
R

(
〈iψ′, ψ〉C + (χr θ)

′), (A.6)

in view of (A.4). This identity is true for any choice of the positive number r. Given an
arbitrary function ψ ∈ X(R), we can fix this choice so that the right-hand side Pθ(ψ) of the
previous formula makes sense. Note however that this quantity possibly depends on the choice
of the phase function θ. This leads to the following definition of the momentum.

Lemma A.1. Given a function ψ ∈ X(R), consider a positive number R such that |ψ(x)| ≥ 1/2
for |x| ≥ R and a phase function θ ∈ C0(I±R ) such that ψ = |ψ|eiθ on I±R . Choose a smooth
cut-off function χ : R → [0, 1] such that χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2, and set
χr(x) = χ(x/r) for a number r > R.

(i) The quantity Pθ(ψ) given by formula (A.6) is well-defined and does not depend on the choice
of neither the function χ, nor the number r.

(ii) When the function ψ is in NVX(R), the momentum Pθ(ψ) does not depend on the choice of
the phase function θ.

(iii) Given an arbitrary function ψ ∈ X(R), the value modulo π of the quantity Pθ(ψ) does
not depend on the choice of the phase function θ, and it is possible to fix this choice such that
Pθ(ψ) ∈ (−π/2, π/2]. In particular, the untwisted momentum [P ] : X(R) → R/πZ defined by
[P ](ψ) = Pθ(ψ) modulo π is well-defined.

In the sequel, we drop the dependence on the phase function θ of the momentum Pθ(ψ) when
the function ψ is in NVX(R). This quantity is only defined on NVX(R). Since it is the only
one to be defined without ambiguity, this is also the only one which we will call momentum.

Proof. The fact that the quantity Pθ(ψ) is well-defined follows from the property that ψ belongs
to H1

loc(R) and from the identity

〈iψ′, ψ〉C + (χr θ)
′ = η θ′, (A.7)

which holds on the intervals I±2r. In view of (A.2), the derivative θ′ indeed lies in L2(I±2r), while
the function η is in L2(R). This is enough to guarantee that the function in (A.7) is integrable
on I±2r, so that the quantity Pθ(ψ) is well-defined. Moreover, its value does not depend on the
choice of either the function χ, or the number r, since

1

2

∫
R

(
(χr − χ̃r̃) θ

)′
= 0,

when the function χ̃ and the number r̃ satisfy the assumptions of Lemma A.1.

Note finally that
1

2

∫
R−

(
2πk−χr

)′
+

1

2

∫
R+

(
2πk+χr

)′
= π

(
k+ − k−),

for (k−, k+) ∈ Z2. Statement (ii) then follows from the fact that the phase function θ is defined
up to a single phase factor 2kπ = 2k−π = 2k+π, when ψ does not vanish. In the general case,
we can add any phase factors 2πk± to the value of the phase θ on the intervals I±R . The previous
computation then guarantees that we can fix this choice such that the quantity Pθ(ψ) lies in the
interval (−π/2, π/2], but also that this quantity is only known modulo π. This completes the
proof of Lemma A.1.
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We now turn to the regularity properties of the momentum P and untwisted momentum [P ].
In order to establish their continuity, we endow the energy set X(R) with a suitable metric
structure. For a fixed number 0 ≤ c <

√
2, we introduce the weighted Sobolev space

Hc(R) :=
{
ψ ∈ C0(R) s.t. ψ′ ∈ L2(R) and η1/2c ψ ∈ L2(R)

}
.

This space is a Hilbert space for the norm given by the formula

‖ψ‖2Hc
:=

∫
R

(
|ψ′|2 + ηc|ψ|2

)
,

where ηc is given, as before, by (18). Using the exponential decay of the functions ηc and the
1/2-Hölder continuity of the functions ψ in Hc(R), we can check that all the norms ‖ · ‖Hc are
equivalent. As a consequence, the space Hc(R) does not depend on c, and we set H(R) := Hc(R)
for simplicity. The energy set X(R) then appears as the subset of H(R) given by

X(R) =
{
ψ ∈ H(R) s.t. η = 1− |ψ|2 ∈ L2(R)

}
,

and we can endow it with the metric structure corresponding to the distances

dc(ψ1, ψ2) :=
(
‖ψ1 − ψ2‖2Hc

+ ‖η1 − η2‖2L2

) 1
2
. (A.8)

This metric structure guarantees the continuity of the Ginzburg-Landau energy E, and it is
also very convenient for dealing with the continuity of the momentum and the stability of the
dark solitons (see e.g. [1, 11, 3, 12]). On the other hand, it is badly taylored to deal with
the differentiability properties of the momentum (see [11]). This is the reason why we use an
alternative approach to establish the differentiability of this quantity. This approach is based on
the observation that the energy set X(R) is stable by addition of functions in H1(R) (see [10,
Lemma 1]). In particular, given a function ψ ∈ X(R), the affine space ψ + H1(R) provides a
natural framework for tackling the differentiability of the momentum around the function ψ.

Before going into more details, we observe that the metric structure corresponding to the dis-
tances dc guarantees a uniform control on the modulus of the functions ψ ∈ X(R).

Lemma A.2. Let 0 ≤ c <
√
2 and consider a function ψ0 ∈ X(R). Given any positive number

ε, there exists a positive number δ such that, if dc(ψ,ψ0) < δ, then∥∥|ψ|2 − |ψ0|2
∥∥
L∞ < ε. (A.9)

Proof. We aim at establishing an H1-control on the difference between the functions η = 1−|ψ|2
and η0 = 1 − |ψ0|2. An L2-control on this difference is directly provided by (A.8), so that we
focus on the differences

η′ − η′0 = 2
(
〈ψ,ψ′

0 − ψ′〉C + 〈ψ0 − ψ,ψ′
0〉C

)
. (A.10)

Observe first that∥∥1− |ψ|
∥∥
L2 ≤ ‖η‖L2 ≤ ‖η0‖L2 + δ and

∥∥|ψ|′∥∥
L2 ≤ ‖ψ′‖L2 ≤ ‖ψ′

0‖L2 + δ,

when dc(ψ,ψ0) < δ. Hence, by the Sobolev embedding theorem, there exists a positive number
C such that ∥∥1− |ψ|

∥∥
L∞ ≤ C

(
‖ψ′

0‖L2 + ‖η0‖L2 + δ
)
. (A.11)
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Note in particular that the function 1−|ψ0| satisfies this inequality. With these bounds at hand,
we estimate (A.10) as∥∥η′ − η′0

∥∥
L2 ≤2‖ψ‖L∞‖ψ′ − ψ′

0‖L2 + 2‖ψ − ψ0‖L∞([−R,R])‖ψ′
0‖L2

+ 2
(
‖ψ‖L∞ + ‖ψ0‖L∞

) (
‖ψ′

0‖L2(I−R ) + ‖ψ′
0‖L2(I+R )

)
.

(A.12)

We next fix the choice of the positive number R in this inequality such that

‖ψ′
0‖L2(I−R ) + ‖ψ′

0‖L2(I+R ) ≤ δ.

We then derive from (18), (A.8) and the Sobolev embedding theorem the existence of a positive
number C, depending only on c and R, such that

‖ψ − ψ0‖L∞([−R,R]) ≤ C‖ψ − ψ0‖Hc ≤ Cdc(ψ,ψ0).

In view of (A.11) and (A.12), we are led to∥∥η′ − η′0
∥∥
L2 ≤ C

(
1 + ‖ψ′

0‖L2 + ‖η0‖L2 + δ
)
dc(ψ,ψ0).

Since ‖η − η0‖L2 ≤ dc(ψ,ψ0) < δ by (A.8), we infer from the Sobolev embedding theorem that∥∥|ψ|2 − |ψ0|2
∥∥
L∞ =

∥∥η − η0
∥∥
L∞ ≤ C

(
1 + ‖ψ′

0‖L2 + ‖η0‖L2 + δ
)
dc(ψ,ψ0).

for a further positive number C. In order to obtain (A.9), we finally fix the choice of the positive
number δ such that C(1+‖ψ′

0‖L2+‖η0‖L2+δ)δ < ε. This completes the proof of Lemma A.2.

We deduce from Lemma A.2 that NVX(R) is an open subset of X(R). We also infer from this
lemma that the momentum P is continuous on this set. We additionally show that its natural
differential at a function ψ ∈ NVX(R) is given by the function iψ′.

Lemma A.3. The momentum P is continuous on the non-vanishing energy set NVX(R).
Moreover, given a function ψ ∈ NVX(R), there exists a positive number δ such that the ball
B(ψ, δ) := {ψ + h : h ∈ H1(R) s.t. ‖h‖H1 < δ} is a subset of NVX(R) on which

P (ψ + h) = P (ψ) +

∫
R
〈iψ′, h〉C +

1

2

∫
R
〈ih′, h〉C. (A.13)

In particular, the restriction of the momentum P to the ball B(ψ, δ) is continuously 1 differen-
tiable, with

dP (ψ)(h) =

∫
R
〈iψ′, h〉C,

for any function h ∈ H1(R).

Proof. Recall that the momentum P is well-defined on NVX(R) by the formula

P (ψ) =
1

2

∫
R
ηθ′,

in which we have set, as before, ψ = ρeiθ and η = 1 − ρ2. In particular, the continuity of this
quantity will follow from the continuity from NVX(R) to L2(R) of the maps ψ 7→ η and ψ 7→ θ′.
Since the continuity of the first one is a direct consequence of (A.8), we focus on the continuity
of the latter one.

1With respect to the metric structure induced by the H1-norm.
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Given a fixed function ψ0 = ρ0e
iθ0 ∈ NVX(R), we compute

θ′0 = −〈iψ′
0, ψ0〉C
ρ20

.

Extending this formula to an arbitrary function ψ of NVX(R), we are led to the expression

θ′ − θ′0 = −〈i(ψ′ − ψ′
0), ψ〉C

ρ2
− 〈iψ′

0, ψ〉C
ρ20 − ρ2

ρ2ρ20
− 〈iψ′

0, ψ − ψ0〉C
ρ20

.

For a positive number δ small enough, we deduce from Lemma A.2 that

inf
x∈R

ρ(x) ≥ m0

2
:=

1

2
inf
x∈R

ρ0(x),

when dc(ψ,ψ0) < δ. Hence, we obtain∥∥θ′ − θ′0
∥∥
L2 ≤ 1

m3
0

(
2m2

0

∥∥ψ′ − ψ′
0

∥∥
L2 + 2‖ψ′

0‖L2

∥∥ρ2 − ρ20
∥∥
L∞ +m0

∥∥ψ′
0(ψ − ψ0)

∥∥
L2

)
.

Invoking (A.8) for estimating the first norm in the right-hand side of this inequality, Lemma A.2
for the second one, and arguing as in the proof of Lemma A.2 for the last one, we infer that the
map ψ 7→ θ′ is continuous from NVX(R) to L2(R).
Concerning differentiability, we deduce from the Sobolev embedding theorem the existence of a
positive number C such that

inf
x∈R

|ψ(x) + h(x)| ≥ inf
x∈R

|ψ(x)| − ‖h‖L∞ ≥ inf
x∈R

|ψ(x)| − C‖h‖H1 >
1

2
inf
x∈R

|ψ(x)| > 0, (A.14)

when ‖h‖H1 < δ = infx∈R |ψ(x)|/(2C). In this case, the function ψ + h belongs to NVX(R), so
that the ball B(ψ, δ) is a subset of NVX(R).
We next consider a function h ∈ C∞

c (R) such that ψ + h ∈ B(ψ, δ). Combining the inequality∣∣∣ ψ + h

|ψ + h|
− ψ

|ψ|

∣∣∣ ≤ 3|h|
|ψ + h|

+
|h|2

|ψ + h|(|ψ|+ |ψ + h|)
,

with (A.14) and the Sobolev embedding theorem, we can find a further positive number C,
depending only on ψ, such that∥∥∥ ψ + h

|ψ + h|
− ψ

|ψ|

∥∥∥
L∞

≤ C
(
1 + ‖h‖H1

)
‖h‖H1 .

Decreasing the value of δ if necessary, we can assume that∥∥∥ ψ + h

|ψ + h|
− ψ

|ψ|

∥∥∥
L∞

< 1. (A.15)

In another direction, it follows from the fact that h has compact support that the phase functions
θh and θ of the functions ψ + h, respectively ψ, are equal at ±∞ up to constants 2k±π, with
k± ∈ Z. We can choose the integer k− = 0 and also deduce from (A.15) and a continuation
argument that |θh − θ| < 2π on R. In this case, we necessarily have k+ = 0, so that θh = θ at
infinity.

Going back to (A.6), we can choose a cut-off function χ and a number r in this definition such
that the support of the functions h and χr are disjoint. Since the values of the phase functions
θh and θ are equal at ±∞, we have

P (ψ + h) =
1

2

∫
R

(
〈i(ψ′ + h′), ψ + h〉C + (χr θ)

′) = P (ψ) +
1

2

∫
R

(
〈i(ψ′ + h′), h〉C + 〈ih′, ψ〉C

)
,

32



which yields (A.13) by integrating by parts the last term in the right-hand side of the previous
formula.

Given an arbitrary function h ∈ H1(R), with ψ + h ∈ B(ψ, δ), we next introduce a sequence of
functions hn ∈ C∞

c (R) such that hn → h in H1(R) as n → ∞. At least for n large enough, we
have

P (ψ + hn) = P (ψ) +

∫
R
〈iψ′, hn〉C +

1

2

∫
R
〈ih′n, hn〉C. (A.16)

In the limit n → ∞, the right-hand side of this identity tends to the right-hand side of (A.13).
Concerning the left-hand side, we show that ψ+hn → ψ+h inX(R) as n→ ∞. This convergence
holds in H(R) due to the property that hn → h in H1(R) as n→ ∞. Moreover, we compute(

1− |ψ + h|2
)
−
(
1− |ψ + hn|2

)
= 2〈ψ, hn − h〉C + |hn|2 − |h|2.

Since the function ψ is bounded on R, it follows from the Sobolev embedding theorem that∥∥(1− |ψ + h|2)− (1− |ψ + hn|2)
∥∥
L2 → 0,

in the limit n→ ∞. Now that the convergence in X(R) is proved, we infer from the continuity of
the momentum P that the left-hand side of (A.16) tends to P (ψ+h) as n→ ∞. This concludes
the proof of (A.13). The continuous differentiability of the restriction of P to the ball B(ψ, δ)
is then a direct consequence of the quadratic expansion in (A.13). This completes the proof of
Lemma A.3.

At this stage, it is tempting to extend by continuity the momentum P to the whole set X(R),
but this is not possible. Consider indeed two smooth cut-off functions χ : R → [0, 1] and
θ : R → [0, 1], with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2, respectively θ(x) = 0 for
x ≤ −2 and θ(x) = 1 for x ≥ 2. Given a fixed integer k ∈ Z, set

ψkn(x) =
(
u0(x) +

i

n
χ(nx)

)
e2iπkθ(nx),

for any n ≥ 1. The functions ψkn belong to NVX(R) and they satisfy(
1− |ψkn(x)|2

)
−
(
1− |u0(x)|2

)
= − 1

n2
χ(nx)2,

∣∣ψkn(x)− u0(x)
∣∣ ≤ |u0(x)|

∣∣e2iπkθ(nx) − 1
∣∣+ 1

n
χ(nx),

and∣∣(ψkn)′(x)− u′0(x)
∣∣ ≤ |u′0(x)|

∣∣e2iπkθ(nx) − 1
∣∣+ |χ′(nx)|+ 2π|k|

(
n|u0(x)||θ′(nx)|+ χ(nx)|θ′(nx)|

)
.

Using the inequality |u0(x)| ≤ |x|/
√
2 and applying the dominated convergence theorem, we

deduce from the three previous formulae the convergence in X(R) of the functions ψkn towards
the function u0 as n → ∞ for any fixed integer k ∈ Z. On the other hand, we infer from the
formula ψk+1

n (x) = ψkn(x) e
2iπθ(nx) that

P (ψk+1
n )−P (ψkn) = nπ

∫
R

(
1−|ψkn(x)|2

)
θ′(nx) dx = π

∫
R

(
1−

∣∣∣u0(y
n

)∣∣∣2− 1

n2
χ(y)2

)
θ′(y) dy → π,

as n → ∞. As a consequence, the momentum P cannot be extended by continuity for the
function u0.

However, the previous counter-example fails to contradict the possible continuity of a momentum
that would only be defined modulo π, and we can indeed show the continuity of the untwisted
momentum [P ] on X(R).
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Lemma A.4. The untwisted momentum [P ] is continuous on X(R). Moreover, it satisfies

[P ](ψ + h) = [P ](ψ) +

∫
R
〈iψ′, h〉C +

1

2

∫
R
〈ih′, h〉C modulo π, (A.17)

for any functions ψ ∈ X(R) and h ∈ H1(R).

Proof. The proof of continuity is based on Lemma A.2. Consider a function ψ0 ∈ X(R) and
choose a positive number R such that |ψ0| ≥ 1/4 on I±R . Applying Lemma A.2, we can find
a positive number δ such that any function ψ satisfies the condition |ψ| ≥ 1/2 on I±R , as soon
as dc(ψ,ψ0) < δ for a fixed number 0 ≤ c <

√
2. Setting as before ψ = ρeiθ and ψ0 = ρ0e

iθ0

on I±R , the quantities Pθ(ψ) and Pθ0(ψ0) are then given by formula (A.6) for a suitable cut-off
function χ and a number r > R, which is independent of the function ψ satisfying the condition
dc(ψ,ψ0) < δ. In particular, we obtain

Pθ(ψ)− Pθ0(ψ0) =
1

2

∫
|x|≤2r

(
〈iψ′, ψ〉C − 〈iψ′

0, ψ0〉C
)
+

1

2

(
θ(2r)− θ0(2r)− θ(−2r) + θ0(−2r)

)
+

1

2

∫
|x|≥2r

(
ηθ′ − η0θ

′
0

)
,

(A.18)

with η = 1− |ψ|2 and η0 = 1− |ψ0|2. When dc(ψ,ψ0) → 0, the first term in the right-hand side
of (A.18) tends to 0 by definition of the ‖ · ‖Hc-norm. Arguing as in the proof of Lemma A.3,
we check that the third term also tends to 0. Concerning the second one, we derive from the
Sobolev embedding theorem that the convergence in H(R) implies the local uniform convergence.
In particular, we have ψ(±2r) → ψ0(±2r) as dc(ψ,ψ0) → 0. Since |ψ0(±2r)| ≥ 1/4, this in turn
implies that eiθ(±2r) → eiθ0(±2r), so that

θ(±2r) → θ0(±2r) modulo 2π.

In view of (A.18), we conclude that

Pθ(ψ) → Pθ0(ψ0) modulo π,

which is enough to guarantee the continuity of the untwisted momentum [P ] on X(R).
Concerning (A.17), we argue as for (A.13). Assume first that h is smooth and compactly sup-
ported. With the notation of Lemma A.1, we can choose the number R in the definition of the
quantity Pθ(ψ) such that the support of h is a subset of [−R,R]. In this case, the function ψ+h
owns the same phase θ as the function ψ on the intervals I±R . Hence the quantity Pθ(ψ + h) is
well-defined by

Pθ(ψ + h) =
1

2

∫
R

(〈
i(ψ′ + h′), ψ + h

〉
C +

(
χrθ

)′
,

which is equal to

Pθ(ψ + h) = Pθ(ψ) +

∫
R
〈iψ′, h〉C +

1

2

∫
R
〈ih′, h〉C,

by integration by parts. In view of Lemma A.1, this is exactly (A.17). For an arbitrary h ∈
H1(R), we argue by density, as in the proof of Lemma A.3, using the continuity of the untwisted
momentum and the property that the right-hand side of (A.17) is continuous with respect to the
convergence in H1(R). This completes the proof of Lemma A.4.
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Due to the previous dual definition of the momentum, two strategies are at hand when we aim
at minimizing a quantity under a fixed momentum p. The first one is to minimize under a fixed
untwisted momentum [P ], but in this case, the constraint p must be assumed to be in R/πZ.
The second one is to restrict the minimization set to the non-vanishing energy set NVX(R)
in case it is possible to define the corresponding minimization problem for any number p ∈ R.
However, this minimization problem does not necessarily own a minimizer due to the fact that a
minimizing sequence could converge to a function, which vanishes on R, and so does not remain
in NVX(R).
When the goal is to minimize the Ginzburg-Landau energy E, this second strategy leads to the
minimization problem

I(p) := inf
{
E(ψ) : ψ ∈ NVX(R) s.t. P (ψ) = p

}
, (A.19)

where the number p can take any arbitrary value in R. Note that this problem is well-defined.
Consider indeed a function ψ = ρeiθ ∈ NVX(R), with P (ψ) 6= 0 (for instance a dark soliton uc
for c 6= 0) and set ψµ = ρeiµθ for any number µ ∈ R. The functions ψµ remain in NVX(R) and
their momentum

P (ψµ) = µP (ψ),

take any arbitrary value in R. Hence, the minimization problems I(p) do make sense. An
important tool in order to solve them is the following lemma.

Lemma A.5 ([1]). Let

E0 := inf
{
E(ψ) : ψ ∈ X(R) s.t. inf

x∈R
|ψ(x)| = 0

}
.

The black soliton u0 is the unique minimizer of the minimization problem E0 up to the invariances
by translation and phase shift. In particular, when

E(ψ) < E0 = E(u0) =
2
√
2

3
,

the function ψ does not vanish on R, so that it belongs to NVX(R).

Given a fixed number p ∈ R, and provided that there exists a function ψ ∈ X(R) such that
E(ψ) < 2

√
2/3 and P (ψ) = p, Lemma A.5 guarantees that the possible limits of a minimizing

sequence for the problem I(p) still belong to NVX(R). This property was invoked in [1] to
address the resolution of the minimization problem I(p) for |p| < π/2. For an arbitrary choice
of p, we have

Proposition A.6. (i) For |p| < π/2, denote by cp the unique number in (0,
√
2), which solves

π

2
− arctan

(
cp√
2− c2p

)
− cp

2

√
2− c2p = |p|. (A.20)

and set cp = sign(p) cp. The dark soliton profile ucp is the unique minimizer of the variational
problem (A.19) up to translation and phase shift. Moreover, the corresponding minimal value is
given by

I(p) = E(ucp) =
1

3

(
2− c2p

) 3
2 . (A.21)

(ii) For |p| ≥ π/2, the variational problem (A.19) does not own any minimizer, and its minimal
value is equal to

I(p) = 2
√
2

3
.
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Remark A.7. We can use Proposition A.6 to complement the proof of Proposition 1 with
respect to [1]. Observe indeed that

I(p) ≤ inf
k∈Z

I(p+ kπ),

for any number p ∈ (−π/2, π/2]. Combining Lemma A.5 and Proposition A.6, we deduce
that I(p) = I(p) for |p| < π/2. In particular, the conclusion in Proposition 1 follows from
Proposition A.6 for this range of values of p.

Proof of Proposition A.6. In view of Lemma A.5, statement (i) is exactly [1, Theorem 2]. We
turn now to statement (ii). First, it was proved in [9, Theorem 2] that the minimal energy I is
a non-negative, even, continuous function on R, whose restriction to R+ is concave. Moreover,
it was computed in [1, Theorem 2] that

I(p) = 1

3

(
2− c2p

) 3
2 ,

for 0 ≤ p ≤ π/2. Since
dcp
dp

= − 1

(2− c2p)
1
2

, (A.22)

I is continuously differentiable on (0, π/2) and

I ′(p) = cp → 0,

as p→ π/2. Since I is also concave on R, we deduce that

I(p) ≤ I(π/2) = 2
√
2

3
, (A.23)

for any p ≥ π/2.

Assume next the existence of a number p > π/2 such that I(p) < 2
√
2/3. Since I(π/2) = 2

√
2/3,

we again infer from the concavity of the function I the existence of a number q > p such that
I(q) < 0. This inequality contradicts the non-negativity of the function I, so that I(p) ≥ 2

√
2/3

for any number p > π/2. In view of (A.23), this inequality is an equality, and since I is an even
function, it also holds for p < −π/2.
In order to complete the proof of statement (ii), we next assume the existence of a minimizer ψp
for the variational problem I(p) with p ∈ R\(−π/2, π/2) being fixed. In view of Lemma A.3, this
minimizer is characterized by the equation dE(ψp) = σdP (ψp) for a suitable Lagrange multiplier
σ ∈ R. The differentials dE and dP in this identity are chosen acting on the space H1(R).
Again by Lemma A.3, the minimizer ψp is then a solution to (1) in X(R). Since P (ψp) 6= 0,
this solution is not constant. As a consequence, the minimizer ψp is equal to the dark soliton
uσ up to the invariances by translation and phase shift. In particular, the number σ lies in
(−

√
2,
√
2), with σ 6= 0 since the black soliton vanishes. However, it follows from [1, Proposition

1] that the momentum P (uσ) belongs to the interval (−π/2, π/2). This contradicts the fact that
|P (ψp)| ≥ π/2, so that there is no minimizer for |p| ≥ π/2.

B Properties of the energy set X(R× T)

In this section, we gather some properties of the energy set

X(R× T) =
{
ψ ∈ H1

loc(R× T) : ∇ψ ∈ L2(R× T) and 1− |ψ|2 ∈ L2(R× T)
}
,
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which are required for defining properly the momentum and providing a suitable functional
framework to solve the minimization problems Iλ(p). The derivation of these properties heavily
relies on the following links between the energy sets X(R) and X(R× T).

Proposition B.1. Let λ be a fixed positive number.

(i) Given a function ψ ∈ X(R), set Ψ(x, y) = ψ(x) for any (x, y) ∈ R×T. The function Ψ is in
X(R× T), with

Eλ(Ψ) = E(ψ).

(ii) Given a function ψ ∈ X(R × T), set ψ̂0(x) =
∫ 1
0 ψ(x, y) dy and w0(x, y) = ψ(x, y) − ψ̂0(x)

for almost any (x, y) ∈ R×T. The functions ψ̂0 and w0 belong to X(R), respectively H1(R×T),
with

Eλ(ψ) =E(ψ̂0) +
1

2

∫
R×T

(
|∂xw0|2 + λ2|∂yw0|2

)
+

∫
R×T

(
〈ψ̂0, w0〉2C − 1

2
|w0|2(1− |ψ̂0|2) + |w0|2〈ψ̂0, w0〉C +

1

4
|w0|4

)
.

(B.1)

Remark B.2. In view of statement (i), we have made the choice to use the same notation for
all the objects and quantities that are defined identically on R and R× T. With a slight abuse
of notation, we have also identified any function in X(R) with the corresponding function in
X(R× T).

Proof. Statement (i) is a direct consequence of the property that the torus T has a finite measure
equal to 1 and that the derivative ∂yψ of a function ψ ∈ X(R×T) depending only on the variable
x is equal to 0.

Concerning statement (ii), we first infer from the Plancherel formula that the gradients ∇ψ̂0 and
∇w0 belong to L2(R × T), with moreover ∂yψ̂0 = 0 and ∂yw0 = ∂yψ. Invoking the Poincaré-
Wirtinger inequality, we obtain∥∥w0

∥∥
L2(R×T) ≤

1

2π

∥∥∂yψ∥∥L2(R×T),

so that the function w0 is indeed in H1(R× T).
By definition, we also compute

1− |ψ̂0|2 = 1− |ψ|2 + 2〈ψ,w0〉C − |w0|2.

Using the inequality
|ψ| ≤

√
21|ψ|≤

√
2 + 2

√
|ψ|2 − 11|ψ|>

√
2,

we deduce from the Sobolev embedding theorem that the functions 〈ψ,w0〉C, and then 1− |ψ̂0|2
are in L2(R×T). Since ψ̂0 only depends on the variable x, we conclude that this function lies in
X(R). Formula (B.1) finally follows from the fact that the functions w0 and ∇w0 are orthogonal
in L2(R× T) to all the functions depending only on the variable x.

Remark B.3. Arguing as for the proof that the function 1 − |ψ̂0|2 is in L2(R × T), we can
show that a function of the form ψ + w belongs to X(R × T) when ψ and w are in X(R × T),
respectively H1(R× T).

Statement (ii) in Proposition B.1 provides a uniquely determined decomposition of an arbitrary
function ψ ∈ X(R × T) as a function in X(R) plus a function in H1(R × T). It is natural to
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take into account this decomposition in order to endow the energy set X(R × T) with a metric
structure. In this direction, we first set

H(R× T) :=
{
ψ = ψ̂0 + w0 ∈ H1

loc(R× T) s.t. ψ̂0 ∈ H(R) and w0 ∈ H1(R× T)
}
.

The set H(R× T) is then a Hilbert space for the norms given by the formula

‖ψ‖2Hc
=

∫
R×T

(
|∇ψ|2 + ηc|ψ|2

)
, (B.2)

for 0 ≤ c <
√
2. This definition is exactly the same as the one of the norm ‖ · ‖Hc in H(R), so

that we have kept the same notation. Observe in particular that the norm ‖ψ‖Hc in H(R × T)
of a function ψ ∈ H(R) is exactly equal to its norm ‖ψ‖Hc in H(R).
Note also that the previous norm is equivalent to the norm given by

‖ψ‖2 = ‖ψ̂0‖2Hc
+ ‖w0‖2H1 . (B.3)

Due to the orthogonality of the functions ∇ψ̂0 and ∇w0 in L2(R × T), the norm ‖ψ‖Hc indeed
controls the norms ‖∇ψ̂0‖L2 and ‖∇w0‖L2 , and then the norm ‖w0‖L2 by the Poincaré inequality.
The reverse inequality follows from the property that the norm ‖w0‖H1 controls the norm ‖w0‖Hc .

At this stage, it is natural to endow the energy set X(R × T) with the metric structure corre-
sponding to the distances

dc(ψ1, ψ2) :=
(
‖ψ1 − ψ2‖2Hc

+ ‖η1 − η2‖2L2

) 1
2
,

with η1 = 1− |ψ1|2 and η2 = 1− |ψ2|2, as before. This definition is again exactly the same as in
X(R), and the distance dc(ψ1, ψ2) in X(R × T) between functions ψ1 and ψ2 in X(R) remains
equal to their distance in X(R). This is the reason why we have again kept the same notation
for the two quantities. A useful property of this metric structure is

Lemma B.4. (i) Let ψ = ψ̂0+w0 ∈ X(R×T). Consider a sequence of functions ψn ∈ X(R×T)
such that ψn → ψ in X(R×T) as n→ ∞ and denote ψn = ψ̂n0 +wn0 the decomposition given by
Proposition B.1. In the limit n→ ∞, we have

ψ̂n0 → ψ̂0 ∈ X(R) and wn0 → w0 in H1(R× T).

(ii) Let g ∈ X(R), h ∈ H1(R×T), and set ψ = g+h. Consider sequences of functions gn ∈ X(R)
and hn ∈ H1(R× T) such that gn → g in X(R), and hn → h in H1(R× T), as n → ∞. Then,
the functions ψn = gn + hn satisfy

ψn → ψ in X(R× T), (B.4)

as n→ ∞.

Proof. Concerning statement (i), we deduce from the equivalence between the Hc-norms and the
norms in (B.3) that ψ̂n0 → ψ̂0 in H(R) and wn0 → w0 in H1(R× T). The fact that 1− |ψ̂n0 |2 →
1− |ψ̂0|2 in L2(R) then follows from the identity(
1−|ψ̂n0 |2

)
−
(
1−|ψ̂0|2

)
=

(
|ψ|2−|ψn|2

)
+
(
|wn0 |2−|w0|2

)
+2〈ψ̂n0−ψ̂0, w0〉C+2〈ψ̂n0 , wn0−w0〉C. (B.5)

The first term in the right-hand side of this expression tends to 0 in L2(R × T) due to the
convergence ψn → ψ in X(R × T). The second one also tends to 0 in L2(R × T) due to the
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convergence wn0 → w0 in H1(R×T) and the Sobolev embedding theorem. For the third one, we
recall that the convergence in H(R) implies the convergence in L∞

loc(R) by the Sobolev embedding
theorem. Since the energy set X(R) is a subset of Z1(R), the function ψ̂0 is also bounded on R.
In particular, it follows from the dominated convergence theorem that the third term in (B.5)
also converges to 0 in L2(R × T). In view of Lemma A.2, the functions ψ̂n0 are then uniformly
bounded on R. Similarly, the fourth term in (B.5) also tends to 0 in L2(R × T) due to the
convergence wn0 → w0 in H1(R×T). In conclusion, the left-hand side of (B.5) converges to 0 in
L2(R× T), and then in L2(R) since it only depends on the variable x.

The proof of statement (ii) is very similar. Observe first that the functions ψ and ψn are in
X(R × T) by Proposition B.1 and Remark B.3. The convergence ψn → ψ in H(R × T) then
follows from the fact that the H1-norm controls the Hc-norms. Moreover, we compute(

1− |ψn|2
)
−
(
1− |ψ|2) =

(
|g|2 − |gn|2

)
+
(
|h|2 − |hn|2

)
+ 2〈g − gn, h〉C + 2〈gn, h− hn〉C.

The convergence 1−|ψn+wn|2 → 1−|ψ+w|2 in L2(R×T) follows as for (B.5). This completes
the proofs of (B.4) and of Lemma B.4.

Note also that the energies Eλ are continuous with respect to the distances dc. Moreover, we
can show the following density result, which is useful for describing the minimal energy Iλ.

Corollary B.5. Let λ be a positive number. Consider a function ψ ∈ X(R×T) and decompose it
as ψ = ψ̂0 +w0 according to Proposition B.1. There exist two sequences of functions gn ∈ X(R)
and hn ∈ H1(R× T), which satisfy the following properties.

(i) The functions gn are smooth on R and there exist numbers R±
n > 0 and θ±n ∈ R for which

gn(x) = eiθ
±
n for any ±x ≥ ±R±

n .

(ii) The functions hn are smooth on R× T and compactly supported in [−R−
n , R

+
n ]× T.

(iii) We have the convergences

gn → ψ̂0 in X(R) and hn → w0 in H1(R× T), (B.6)

as n→ ∞.

(iv) The functions ψn = gn + hn are in X(R× T), with

ψn → ψ in X(R× T) and Eλ(ψn) → Eλ(ψ),

as n→ ∞.

Proof. The proof is based on a decomposition of the functions in X(R), which was established by
P. Gérard in [11, Theorem 1.8]. Given an arbitrary function ψ̃ ∈ X(R), there exist a real-valued
function ϕ̃ ∈ C0(R), with ϕ̃′ ∈ L2(R), and a complex-valued function ϖ̃ ∈ H1(R) such that

ψ̃ = eiϕ̃ + ϖ̃. (B.7)

Moreover, the phase function ϕ̃ is determined up to adding a real-valued function φ ∈ C0(R),
with φ′ ∈ L2(R), and such that there exist k± ∈ Z with φ − 2πk± ∈ L2(R±). Since ψ̂0 belongs
to X(R) by Proposition B.1, we can decompose it as ψ̂0 = eiϕ +ϖ, with ϕ and ϖ satisfying the
previous conditions.

We next invoke the density of smooth, compactly supported functions in L2(R) and H1(R) so
as to find two sequences of functions φn and ϖn in C∞

c (R) such that φn → ϕ′ in L2(R), and

39



ϖn → ϖ in H1(R), as n→ ∞. Since the function ϕ is continuous, we are then allowed to define
functions ϕn by the formula

ϕn(x) = ϕ(0) +

∫ x

0
φn(t) dt,

for any x ∈ R. By the inequality

|ϕn(x)− ϕ(x)| ≤
∣∣∣∣ ∫ x

0

(
φn(t)− ϕ′(t)

)
dt

∣∣∣∣ ≤ √
R
∥∥φn − ϕ′

∥∥
L2([−R,R])

,

which holds for any positive number R, we obtain that ϕn → ϕ in L∞
loc(R), while in addition

ϕ′n → ϕ′ in L2(R), when n→ ∞.

At this stage, we set gn = eiϕn + ϖn. The functions gn satisfy statement (i) in Corollary B.5.
Given a number 0 ≤ c <

√
2, we moreover have

η
1
2
c

(
gn − ψ̂0

)
= η

1
2
c

(
eiϕn − eiϕ

)
+ η

1
2
c

(
ϖn −ϖ

)
,

g′n − ψ̂′
0 = i

(
ϕ′n − ϕ′

)
eiϕn + iϕ′(eiϕn − eiϕ) +ϖ′

n −ϖ′,

as well as(
1− |gn|2

)
−
(
1− |ψ̂0|2

)
= 2〈eiϕ − eiϕn , ϖ〉C + 2〈eiϕn , ϖ −ϖn〉C + |w|2 − |wn|2.

Invoking the Sobolev embedding theorem, and applying the dominated convergence theorem
when necessary, we are led to

dc(gn, ψ̂0) → 0,

as n→ ∞. Note also that gn → ψ̂0 in L∞
loc(R) by the Sobolev embedding theorem.

We finally complete the proof of statement (iii), and provide the one of statement (ii), by
introducing a further sequence of functions hn ∈ C∞

c (R × T) such that hn → w0 in H1(R × T),
as n→ ∞.

The convergence of the functions ψn = gn + hn towards the function ψ in X(R × T) is then a
direct consequence of statement (iii) and Lemma B.4. The convergence of the energies Eλ(ψn)
towards the energy Eλ(ψ) follows by continuity of the energy Eλ on X(R× T). This completes
the proof of Corollary B.5.

C Definition and properties of the momentum

In this section, we provide the definition of the momentum in the energy set X(R × T) and
describe its main properties. Our starting point is the decomposition ψ = ψ̂0 +w0 of a function
ψ ∈ X(R× T), which is given by Proposition B.1. Using this decomposition, the formal density
of momentum writes as

〈i∂xψ,ψ〉C = 〈i∂xψ̂0, ψ̂0〉C + 〈i∂xψ̂0, w0〉C + 〈i∂xw0, ψ̂0〉C + 〈i∂xw0, w0〉C.

The first term in the right-hand side of this identity is the formal density of the momentum of a
function ψ̂0 ∈ X(R), so that we can define it rigorously by invoking Lemma A.1. The second and
third terms are scalar products of functions, which are at least formally orthogonal in L2(R×T).
Hence, their integral is at least formally equal to 0. Finally, the last term is integrable on R×T
since w0 ∈ H1(R× T). As a conclusion, it is natural to define the momentum of the function ψ
as

P (ψ) = Q(ψ̂0) +
1

2

∫
R×T

〈i∂xw0, w0〉C.

40



In this expression, the quantity Q(ψ̂0) refers to a 1D momentum of the function ψ̂0, which can
be either equal to the quantity Pθ0(ψ̂0) in (A.6), the momentum P (ψ̂0) when ψ̂0 ∈ NVX(R), or
the untwisted momentum [P ](ψ̂0). More precisely, we have

Lemma C.1. Given a function ψ in X(R× T), decompose it as ψ = ψ̂0 + w0, with ψ̂0 and w0

as in Proposition B.1. Consider a positive number R0 such that |ψ̂0(x)| ≥ 1/2 for |x| ≥ R0 and
a phase function θ0 ∈ C0(I±R0

) such that ψ̂0 = |ψ̂0|eiθ0 on I±R0
. Choose a smooth cut-off function

χ : R → [0, 1] such that χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2, and set χr(x) = χ(x/r)
for a number r > R0.

(i) The quantity

Pθ0(ψ) = Pθ0(ψ̂0) +
1

2

∫
R×T

〈i∂xw0, w0〉C, (C.1)

is well-defined and does not depend on the choice of neither the function χ, nor the number r.

(ii) When the function ψ̂0 does not vanish on R, the quantity Pθ0(ψ) does not depend on the
choice of the phase function θ0. In the sequel, this quantity is called momentum and simply
denoted by P (ψ).

(iii) In the general case, the value modulo π of the quantity Pθ0(ψ) does not depend on the choice
of the phase function θ0, and it is possible to fix this choice such that Pθ0(ψ) ∈ (−π/2, π/2]. In
particular, the untwisted momentum [P ] : X(R×T) → R/πZ defined by [P ](ψ) = Pθ0(ψ) modulo
π is well-defined.

Remark C.2. In view of Remark B.2, a function ψ ∈ X(R) is also a function in X(R× T), so
that we can define its momentum as a function in X(R) or in X(R×T). Lemma C.1 guarantees
that these definitions are identical whatever is the definition of the momentum (Pθ(ψ), P (ψ) or
[P ](ψ)) under consideration. In this case, the functions ψ and ψ̂0 are indeed equal, so that the
function w0 identically vanishes.

Proof. Lemma C.1 is a direct consequence of Lemma A.1 since the term depending on the
function w0 in (C.1) is well-defined for w0 ∈ H1(R× T).

At this stage, it is natural to introduce the set

Y (R× T) :=
{
ψ = ψ̂0 + w0 ∈ X(R× T) s.t. ψ̂0 ∈ NVX(R)

}
.

Though this open set plays the role of the set NVX(R) in the context of the product space R×T,
it is not the subset NVX(R×T) of non-vanishing functions in X(R×T). With the definition of
Y (R× T) at hand, we can extend Lemmas A.3 and A.4 as

Lemma C.3. (i) The momentum P is continuous on the subset Y (R × T). Moreover, given a
function ψ ∈ Y (R × T), there exists a positive number δ such that the ball B(ψ, δ) := {ψ + h :
h ∈ H1(R× T) s.t. ‖h‖H1 < δ} is a subset of Y (R× T) on which

P (ψ + h) = P (ψ) +

∫
R×T

〈i∂xψ, h〉C +
1

2

∫
R×T

〈i∂xh, h〉C. (C.2)

In particular, the restriction of the momentum P to the ball B(ψ, δ) is continuously 2 differen-
tiable, with

dP (ψ)(h) =

∫
R×T

〈i∂xψ, h〉C,

for any function h ∈ H1(R× T).
(ii) The untwisted momentum [P ] is continuous on X(R× T).

2With respect to the metric structure induced by the H1-norm.
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Proof. The continuity of the momentum P and untwisted momentum [P ] is a direct consequence
of Lemmas A.3 and A.4 applying statement (i) of Lemma B.4.

Concerning the proof of (C.2), we consider a function ψ = ψ̂0 + w0 ∈ Y (R × T) and invoke
Lemma A.3 in order to exhibit a positive number δ such that the functions ψ̂0+g lie in NVX(R)
when g ∈ H1(R) with ‖g‖H1 < δ. Assume here that h ∈ H1(R × T) with ‖h‖H1 < δ. We can
decompose h as h = ĥ0 + w, with ĥ0(x) =

∫
T h(x, y) dy as before, and use the orthogonality

of this decomposition in order to check that ‖ĥ0‖H1 < δ. As a consequence, the function
ψ + h = ψ̂0 + ĥ0 + w0 + w lies in Y (R × T), which amounts to say that the ball B(ψ, δ) is a
subset of Y (R×T). Moreover, we can combine (A.13) and (C.1) in order to develop the quantity
P (ψ + h) as

P
(
ψ + h

)
=P

(
ψ̂0 + ĥ0

)
+

1

2

∫
R×T

〈
i∂x(w + w0), w + w0〉C

=P
(
ψ̂0

)
+

1

2

∫
R×T

〈
i∂xw0, w0

〉
C +

∫
R×T

(〈
i∂xψ̂0, ĥ0

〉
C +

〈
i∂xw0, w

〉
C

)
+

1

2

∫
R×T

(〈
i∂xĥ0, ĥ0

〉
C +

〈
i∂xw,w

〉
C

)
.

Formula (C.2) then follows from the orthogonality conditions between the functions ψ̂0 and ĥ0
on the one hand, and w and w0 on the other hand. The value of the differential dP (ψ) and its
continuity are then a direct consequence of this formula. This ends the proof of Lemma C.3.

We next relate the momentum of a function ψ ∈ X(R × T) with the untwisted momenta of its
slices ψ(·, y) for y ranging in T.

Lemma C.4. Let ψ = ψ̂0+w0 ∈ X(R×T). Consider a positive number R0 such that |ψ̂0(x)| ≥
1/2 for |x| ≥ R0 and a phase function θ0 ∈ C0(I±R0

) such that ψ̂0 = |ψ̂0| eiθ0 on I±R0
. For almost

every y ∈ T, the functions w0(·, y) and ψ(·, y) are well-defined in H1(R), respectively in X(R).
In particular, the quantities

pθ0
(
ψ(·, y)

)
:= Pθ0(ψ̂0) +

∫
R

〈
iψ̂′

0, w0(·, y)
〉
C +

1

2

∫
R

〈
i∂xw0(·, y), w0(·, y)

〉
C, (C.3)

are well-defined for almost any y ∈ T, and they satisfy

Pθ0
(
ψ
)
=

∫
T
pθ0

(
ψ(·, y)

)
dy, (C.4)

as well as
pθ0

(
ψ(·, y)

)
= [P ]

(
ψ(·, y)

)
modulo π. (C.5)

Proof. Recall first that w0 is in H1(R × T), so that the slices w0(·, y) belong to H1(R) for
almost any y ∈ T. Since the energy set X(R) remains stable by addition of functions in H1(R),
the slices ψ(·, y) are in X(R) for almost any y ∈ T. The quantity pθ0(ψ(·, y)) is also well-
defined and depends only on the function ψ(·, y) due to the uniqueness of the decomposition
ψ(·, y) = ψ̂0 + w0(·, y).
Going back to the definition of the quantity Pθ0(ψ) in Lemma C.1 and using the fact that ψ̂′

0

and w0 are orthogonal in L2(R× T), we next invoke the Fubini theorem in order to write

Pθ0(ψ) =Pθ0(ψ̂0) +
1

2

∫
R×T

〈i∂xw0, w0〉C

=

∫
T

(
Pθ0(ψ̂0) +

∫
R

〈
iψ̂′

0, w0(·, y)
〉
C +

1

2

∫
R

〈
i∂xw0(·, y), w0(·, y)

〉
C

)
dy.
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This is exactly (C.4), so that it only remains to establish (C.5). This latter inequality is a
direct consequence of (A.17) since Pθ0(ψ̂0) = [P ](ψ̂0) modulo π by definition of the untwisted
momentum. This completes the proof of Lemma C.4.

Going back to the density result in Corollary B.5, we finally derive the following useful formula
for the momentum of smooth functions with compactly supported gradients.

Lemma C.5. Let g be a smooth function in X(R) such that there exist numbers R± > 0 and
θ± ∈ R for which g(x) = eiθ

± for any ±x ≥ R±. Consider a function h ∈ C∞
c (R × T) with

support in [−R−, R+]×T and set ψ = g+h. Then, the function ψ̂0 writes as ψ̂0(x) = eiθ0(x) for
±x ≥ R±, with θ0(x) = θ+ if x ≥ R+ and θ0(x) = θ− for x ≤ −R−. Moreover, the quantities
pθ0(ψ(·, y)) in Lemma C.4 are given by

pθ0
(
ψ(·, y)

)
=

1

2

∫
R
〈i∂xψ(·, y), ψ(·, y)〉C +

1

2

(
θ+ − θ−

)
. (C.6)

for almost any y ∈ T. As a consequence, we have

Pθ0(ψ) =

∫
T
pθ0

(
ψ(·, y)

)
dy, (C.7)

with Pθ0(ψ) = [P ](ψ) modulo π, and pθ0
(
ψ(·, y)

)
= [P ]

(
ψ(·, y)

)
modulo π, for almost any y ∈ T.

When the function ψ̂0 does not vanish on R, the momentum P (ψ) is also given by (C.7).

Proof. Observe first that ψ(x, y) = g(x) when ±x ≥ R±, so that

ψ̂0(x) =

∫
T
ψ(x, y) dy = g(x) = eiθ

±
= eiθ0(x).

For almost every y ∈ T, we therefore deduce from (C.3) that

pθ0
(
ψ(·, y)

)
=

1

2

∫
R

(〈
iψ̂′

0, ψ̂0

〉
C +

(
χr θ0

)′
+ 2

〈
iψ̂′

0, w0(·, y)
〉
C +

〈
i∂xw0(·, y), w0(·, y)

〉
C

)
, (C.8)

with w0 = ψ − ψ̂0 and r > max{R−, R+}. We next have∫
R
(χr θ0)

′ = θ+ − θ−.

Since w0(x, y) = 0 for ±x ≥ R±, we also deduce from an integration by parts that∫
R

〈
iψ̂′

0, w0(·, y)
〉
C =

1

2

∫
R

(〈
iψ̂′

0, w0(·, y)
〉
C +

〈
i∂xw0(·, y), ψ̂0

〉
C

)
.

Formula (C.6) then follows from (C.8). Formula (C.7), as well as the other statements in
Lemma C.5, then result from the definitions in Lemma C.1 and the properties in Lemma C.4.
This concludes the proof of Lemma C.5.
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