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Abstract

We construct families of smooth travelling-wave solutions to the inviscid surface quasi-
geostrophic equation (SQG). These solutions can be viewed as the equivalents for this
equation of the vortex anti-vortex pairs in the context of the incompressible Euler equation.
Our argument relies on the stream function formulation and eventually amounts to solving
a fractional nonlinear elliptic equation by variational methods.

1 Introduction

We consider the inviscid surface quasi-geostrophic equation{
∂tθ + u · ∇θ = 0,

u = R⊥θ,
(SQG)

where R is the Riesz transform, θ : R2 × R→ R is called the active scalar and u : R2 × R→ R2

is the velocity field induced by θ. Since u is divergence free, it is convenient to relate u and θ
through a stream function ψ : R2 × R→ R by the equations{

u = ∇⊥ψ,
(−∆)

1
2ψ = θ.

The inviscid surface quasi-geostrophic equation first appeared as a limit model in the context of
geophysical flows. It has been widely investigated since the seminal work [5] of Constantin, Majda
and Tabak, which pointed out its formal mathematical analogies with the three dimensional Euler
equation. The Cauchy problem for (SQG) is known to be extremely delicate, and large classes
of initial data are expected to produce finite time singularities. Besides radially symmetric
solutions, which are all stationary, the only examples of global smooth solutions we are aware
of were recently provided by Castro, Córdoba and Gómez-Serrano [4]. We also refer to [4] for
an extensive bibliography on the Cauchy problem for (SQG). Our main goal in this note is to
provide an alternative construction of smooth families of global special solutions.

We focus on travelling-wave solutions to (SQG). Up to a rotation, we may assume, without
loss of generality, that these waves have a positive speed c in the vertical direction z, so that

θ(r, z, t) = Θ(r, z − ct), u(r, z, t) = U(r, z − ct), ψ(r, z, t) = Ψ(r, z − ct),
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for some profile functions Θ, U and Ψ defined on R2. In this setting, equation (SQG) may be
recast as the orthogonality condition〈

∇⊥Ψ− cez,∇Θ
〉
R2 = 0, (1)

with ez = (0, 1). In the context of the Euler equation, Arnold [2] remarked that any function of
the form

Θ(r, z) = f(Ψ(r, z)− cr)

automatically satisfies the orthogonality condition (1), at least formally, so that the travelling-
wave problem reduces to a nonlinear elliptic equation. In our context, the same idea would lead
to the fractional equation

(−∆)
1
2 Ψ = f(Ψ− cr).

We study a slight variation of this idea, in particular in order to get away from the radially
symmetric situation. We first assume a mirror symmetry with respect to the z-axis, namely

Ψ(r, z) = −Ψ(−r, z), (2)

so that U(r, z) = U(−r, z) and Θ(r, z) = −Θ(−r, z). We next impose the ansatz

Θ(r, z) =

{
f
(
Ψ(r, z)− cr − k

)
if r ≥ 0,

−f
(
−Ψ(r, z) + cr − k) if r ≤ 0,

(3)

where f is a smooth profile, and k a positive number, to be specified later. In order to avoid
any ambiguity or singularity for r = 0, we shall impose that f(s) vanishes whenever s ≤ 0. The
condition (3) also enforces the orthogonality condition (1), and leads likewise to the equation

(−∆)
1
2 Ψ =

{
f
(
Ψ(r, z)− cr − k

)
if r ≥ 0,

−f
(
−Ψ(r, z) + cr − k) if r ≤ 0.

(4)

Equation (4) is variational. Under our previous assumptions, its solutions are critical points of
the functional

E(Ψ) :=
1

2

∫
R2

Ψ(−∆)
1
2 Ψ−

∫
H
F (Ψ− cr − k)−

∫
R2\H

F (−Ψ + cr − k),

where we have set H := {(r, z) ∈ R2 s.t. r ≥ 0} and F (s) :=
∫ s

0 f(x) dx. We construct critical
points of E as minimizers on the so-called Nehari manifold. For that purpose, we now make
precise our functional framework. We assume 1

f ∈ C∞(R,R) \ {0}, (H1)
f(s) = 0, ∀ s ≤ 0, (H2)
f ′′′(s) ≥ 0, ∀ s ≥ 0, (H3)
∃ν < 3 and C > 0 s.t. f(s) ≤ Csν , ∀ s ≥ 0. (H4)

A typical example verifying these assumptions is given by any function f with f(0) = f ′(0) =
f ′′(0) = 0, and f ′′′ = g, where g (6= 0) is smooth, non-negative, and compactly supported in R+.
Under these assumptions, the functional E is well-defined and differentiable on the Hilbert space

X :=
{

Ψ ∈ L4(R2) s.t. Ψ ∈ Ḣ
1
2 (R2)

}
,

1Note that these assumptions together imply that ν ≥ 2.
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endowed with the scalar product

〈
Ψ1,Ψ2

〉
X

:=

∫
R2

∫
R2

(
Ψ1(x)−Ψ1(y)

) (
Ψ2(x)−Ψ2(y)

)
|x− y|3

dx dy. (5)

The energy E is invariant under the symmetry group generated by (2). It follows from the Palais
principle of symmetric criticality [7] that any critical point of the restriction of E to the space
Xsym of invariant functions is also a critical point of E on the entire space X. In the sequel,
we therefore restrict our analysis to the space Xsym. In that space, the energy E reduces to the
expression

E(Ψ) =
1

2

∥∥Ψ
∥∥2

X
− 2V (Ψ) :=

1

2

∫
R2

Ψ(−∆)
1
2 Ψ− 2

∫
H
F (Ψ− cr − k).

The Nehari manifold associated to E is defined by

N =
{

Ψ ∈ Xsym \ {0} s.t. E′(Ψ)(Ψ) = 0
}
,

so that Ψ ∈ N if and only if∫
R2

Ψ(−∆)
1
2 Ψ− 2

∫
H
f(Ψ− cr − k) Ψ = 0.

We shall prove that the set N is a non-empty C1-submanifold of Xsym without boundary. Our
main result is then

Theorem 1. Let c and k be two positive numbers, and f be an arbitrary profile verifying the
assumptions (H1)-(H4). The functional E possesses a minimizer Ψ on N . As a consequence,
there exists a non-trivial smooth travelling-wave solution θ to (SQG) given by

θ(r, z, t) = Θ(r, z − ct) = f
(
Ψ(r, z − ct)− cr − k

)
,

for all (r, z) ∈ H, and which satisfies the symmetry

Θ(r, z) = −Θ(−r, z) = Θ(r,−z),

for all (r, z) ∈ R2. The restriction of Θ to H is non-negative with compact support, and is
decreasing with respect to |z|.

In the context of the two-dimensional and axisymmetric three-dimensional Euler equations,
related constructions were first carried out by Berger and Fraenkel [3] and Norbury [6]. Contrary
to these works, we do not know whether the support restricted to H of the profile Θ in Theorem 1
is connected.

2 Strategy of the proof

We consider the minimization problem

α := inf
{
E(Ψ), Ψ ∈ N

}
. (P)

For Ψ ∈ Xsym, we denote by Ψ† the unique function, which is equal to the positive part Ψ+ of
Ψ within H, and which belongs to Xsym. Since the nonlinearity f identically vanishes on the
negative axis, a function Ψ cannot belong to N if Ψ† ≡ 0. On the other hand, we have
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Proposition 1. The Nehari constraint N is a non-empty C1-submanifold of Xsym. For any
Ψ ∈ Xsym with Ψ† 6= 0, there exists a unique positive number tΨ such that tΨΨ ∈ N . The value
of tΨ is characterized by the identity

E(tΨΨ) = max
{
E(tΨ), t > 0

}
, (6)

and any critical point of E on N is a non-trivial smooth solution to (4). Moreover, we have

β := inf
{
‖Ψ‖2X , Ψ ∈ N

}
> 0, (7)

and for any Ψ ∈ N ,
‖Ψ‖2X ≤ 6E(Ψ). (8)

In particular, the minimal value α ≥ β/6 is positive, and any minimizing sequence for E on N
is bounded.

We notice that E(Ψ†) ≤ E(Ψ). A related observation is

Lemma 1. For any Ψ ∈ N , we have

E
(
tΨ†Ψ†

)
≤ E(Ψ),

the inequality being strict whenever Ψ is not equal to Ψ†.

We denote by X†sym and N † the subsets of functions Ψ in Xsym, respectively N , which satisfy
Ψ = Ψ†. From Lemma 1, we deduce that

α := inf
{
E(Ψ), Ψ ∈ N †

}
,

and we therefore restrict our attention in the sequel to the functions Ψ in X†sym.

For Ψ ∈ X†sym, we denote by Ψ] its Steiner symmetrization with respect to the vertical variable
z. We observe that E(Ψ]) ≤ E(Ψ). Similarly to Lemma 1, we have

Lemma 2. For any Ψ ∈ N †, we have

E
(
tΨ]Ψ

]
)
≤ E(Ψ).

In view of the information gathered so far, we may restrict our attention to a minimization
sequence (Ψn)n∈N for (P) such that Ψn = Ψ†n = Ψ]

n. By Proposition 1, this sequence is bounded.
We claim

Lemma 3. Let c and k be positive numbers. The mapping

Ψ 7→
(
Ψ] − cr − k

)†
is compact from X†sym into Lp(R2) for any number 1 ≤ p < 4.

Passing to a subsequence if necessary, we assume that Ψn ⇀ Ψ∗ weakly in X, and (Ψn− cr−
k)† → (Ψ∗ − cr − k)† strongly in Lp(R2), as n→ +∞, for any 1 ≤ p < 4.

Proposition 2. The convergence of Ψn towards Ψ∗ is strong in X. In particular, Ψ∗ is a solution
to the minimization problem (P).

We finally define Θ∗ from Ψ∗ according to (3), and we complete the proof of Theorem 1 by

Proposition 3. The function Ψ∗ is smooth on R2, and there exists a positive number C such
that ∣∣Ψ∗(r, z)∣∣ ≤ C

1 + |r|+ |z|
, ∀(r, z) ∈ R2.

In particular, the function Θ∗ has compact support in R2 \ {(r, z) ∈ R2 s.t. r = 0}.

4



3 Details of the proofs

3.1 Proof of Proposition 1

Les us fix Ψ ∈ Xsym, with Ψ† 6= 0. Given a positive number t, we let

g(t) :=
E′(tΨ)(tΨ)

t2
=

1

2

∥∥Ψ
∥∥2

X
− 2

t

∫
H
f
(
tΨ† − cr − k

)
Ψ†.

We claim that the map t 7→ g(t) has one and only one zero in R+. As a consequence of our
assumptions on f ′′′, we first observe that

zf ′(z)− 2f(z) ≥ 0, and f(z) ≥ f(z0)
( z
z0

)2
, (9)

for all z, z0 such that z ≥ z0 > 0. Since Ψ† 6= 0, we infer that

g(t)→ −∞,

as t→ +∞. On the other hand, there exists a positive number K such that f(z) ≤ Kz3, when
z ≥ 0. Hence, we have

1

t
f(tΨ† − cr − k) Ψ† ≤ 1

t
f(tΨ†) Ψ† ≤ Kt2

(
Ψ†
)4
, (10)

and therefore,

lim
t→0

g(t) =
1

2
‖Ψ‖2X > 0.

By continuity, there exists at least a positive number tΨ such that g(tΨ) = 0. We claim that
g′(tΨ) < 0, which ensures the uniqueness of tΨ. For that purpose, we compute

t2g′(t) = 2

∫
H

(
f(tΨ† − cr − k)− tΨ†f ′(tΨ† − cr − k)

)
Ψ†

≤ −2

∫
H

(
f(tΨ† − cr − k) + (cr + k)f ′(tΨ† − cr − k)

)
Ψ†,

(11)

where the last inequality follows from (9). Since g(tΨ) = 0, we obtain∫
H
f(tΨΨ† − cr − k) Ψ† =

tΨ
4

∥∥Ψ
∥∥2

X
> 0.

The uniqueness of tΨ results from the non-negativeness of c, k and f ′. The characterization (6)
is then a consequence of the identity tg(t) = d

dtE(tΨ).

For Ψ ∈ N , we next write

E(Ψ) = E(Ψ)− 1

3
E′(Ψ)(Ψ) =

1

6

∥∥Ψ
∥∥2

X
+

2

3

∫
H

(
f(Ψ− cr − k)Ψ− 3F (Ψ− cr − k)

)
.

By integration of (9), we know that zf(z) − 3F (z) ≥ 0 when z ≥ 0, which gives (8). In view
of (10), and the fact that Ψ ∈ N , we also have

1

2

∥∥Ψ
∥∥2

X
= 2

∫
H
f(Ψ† − cr − k) Ψ† ≤ 2K

∫
H

(
Ψ†
)4 ≤ C∥∥Ψ

∥∥4

X
,

where we have used the Sobolev embedding theorem. This yields (7), with β := 1/(2C). The
positivity of α follows combining (7) and (8).
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The smoothness of N is then a consequence of the implicit function theorem applied to
the smooth mapping Ξ : (t,Ψ) 7→ E′(tΨ)(Ψ), which is defined on the open set R∗+ × {Ψ ∈
Xsym s.t. Ψ† 6= 0}. Indeed, whenever Ψ ∈ N , we deduce as in (11) that

∂tΞ(1,Ψ) = 2

∫
H

(
f(Ψ† − cr − k)−Ψ†f ′(Ψ† − cr − k)

)
Ψ† < 0.

Finally, any minimizer of E on N is a global minimizer of the function Ψ 7→ E(tΨΨ) on the open
set {Ψ ∈ Xsym s.t. Ψ† 6= 0}. Therefore, using the definition of the Nehari manifold and the fact
that tΨ = 1 for Ψ ∈ N , we conclude that

E′(Ψ)(h) = E′(tΨΨ)(t′Ψ(h)Ψ + tΨh) = 0,

for all h ∈ Xsym.

3.2 Proof of Lemma 1

Let us first remark that Ψ† 6= 0, when Ψ ∈ N . In view of (6), and the fact that Ψ ∈ N , we know
that

E(Ψ) ≥ E(tΨ†Ψ).

On the other hand, since F vanishes on the negative axis, it holds

V (tΨ†Ψ) = V (tΨ†Ψ†).

Finally, we deduce from the definition (5) of the scalar product in X, and from the fact that Ψ
and Ψ† coincide on the support of Ψ†, that

‖tΨ†Ψ‖2X ≥ ‖tΨ†Ψ†‖2X ,

the inequality being strict whenever Ψ 6= Ψ†. The conclusion follows combining the previous
three arguments.

3.3 Proof of Lemma 2

Arguing exactly as in the proof of Lemma 1, it suffices to establish that

E(Ψ]) ≤ E(Ψ),

when Ψ ∈ X†sym. Since the Steiner symmetrization only involves rearrangements of super-level
sets, we first have

V (Ψ]) = V (Ψ).

On the other hand, we claim that
‖Ψ]‖2X ≤ ‖Ψ‖2X . (12)

This was proved e.g. by Almgren and Lieb [1, Theorem 9.2]. For the sake of completeness, we
present below a related short proof.

We first observe that

‖Ψ‖2X = lim
t→0

∫
R2

∫
R2

|Ψ(x)−Ψ(y)|2

(|x− y|2 + t2)
3
2

dx dy.

For a compactly supported function Ψ and for a fixed positive number t, symmetrizing the last
expression in x and y yields the identity∫

R2

∫
R2

|Ψ(x)−Ψ(y)|2

(|x− y|2 + t2)
3
2

= 2

∫
R2

∫
R2

Ψ(x)2

(|x− y|2 + t2)
3
2

dx dy − 2

∫
R2

∫
R2

Ψ(x)Ψ(y)

(|x− y|2 + t2)
3
2

dx dy.
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In the right-hand side above, the first integral is invariant by any rearrangement, since it only
depends on the super-level sets of Ψ. The second integral is decreased by the Steiner symmetriza-
tion by virtue of the Riesz rearrangement inequality. Passing to the limit t → 0 and using the
density of compactly supported functions in X yields the conclusion (12).

3.4 Proof of Lemma 3

Let T : Ψ 7→ (Ψ− cr − k)†. We first claim that T maps X†sym into itself. Since T (Ψ) ∈ L4(R2),
we are reduced to prove that T (Ψ) ∈ Ḣ

1
2 (R2). We introduce the set

Ω(Ψ) :=
{

(r, z) ∈ H s.t. Ψ(r, z) > cr + k
}

=
{

(r, z) ∈ H s.t. T (Ψ)(r, z) > 0
}
.

In order to compute the double integral defining the Ḣ
1
2 -norm of T (Ψ), we split H as Ω(Ψ) ∪

Ω(Ψ)c. For sake of simplicity, we write Ω instead of Ω(Ψ) in the sequel. By the Sobolev
embedding theorem, we have

L2
(
Ω
)
≤ 1

k4

∫
H

Ψ4 ≤ C

k4

∥∥Ψ
∥∥4

X
. (13)

First, we check that∫
Ω

∫
Ω

|T (Ψ)(x)− T (Ψ)(y)|2

|x− y|3
dx dy ≤ 2

∫
Ω

∫
Ω

|Ψ(x)−Ψ(y)|2 + c2|r(x)− r(y)|2

|x− y|3
dx dy,

and, using (13) and the Riesz rearrangement inequality,∫
Ω

∫
Ω

|r(x)− r(y)|2

|x− y|3
dx dy ≤

∫
Ω

∫
Ω

dx dy

|x− y|
≤ 2π

1
2L2(Ω)

3
2 ≤ C

∥∥Ψ
∥∥6

X
.

Next, we have ∫
Ωc

∫
Ωc

|T (Ψ)(x)− T (Ψ)(y)|2

|x− y|3
dx dy = 0,

and we write the last term as∫
Ω

∫
Ωc

|T (Ψ)(x)− T (Ψ)(y)|2

|x− y|3
dx dy =

∫
Ω
|T (Ψ)(x)|2

∫
Ωc

dy

|x− y|3
dx. (14)

For each fixed x ∈ Ω, let

Ox :=
{
y ∈ Ωc s.t. r(y) ≥ r(x) + Λ(x) := r(x) +

1

2c

(
Ψ(x)− cr(x)− k

)}
.

We divide Ωc as Ox ∪ (Ωc \ Ox). On the one hand, the definition of Ox provides∫
Ox

dy

|x− y|3
≤ C

Λ(x)
. (15)

On the other hand, for x ∈ Ω and y ∈ Ωc \ Ox, we can use the definition of Ox in order to get

0 ≤ T (Ψ)(x) = Ψ(x)− cr(x)− k ≤ Ψ(x)−Ψ(y) + c
(
r(y)− r(x)

)
≤ Ψ(x)−Ψ(y) +

1

2
T (Ψ)(x),

so that
|T (Ψ)(x)| ≤ 2|Ψ(x)−Ψ(y)|. (16)

Combining (15) and (16) in (14), we deduce∫
Ω

∫
Ωc

|T (Ψ)(x)− T (Ψ)(y)|2

|x− y|3
dx dy ≤ 4

∫
Ω

∫
Ωc

|Ψ(x)−Ψ(y)|2

|x− y|3
dx dy + C

∫
Ω
|T (Ψ)(x)| dx,
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and we may additionally bound the last term in this sum as∫
Ω
|T (Ψ)(x)| dx ≤ CL2(Ω)

3
4

∥∥Ψ
∥∥
L4 ≤ C

∥∥Ψ
∥∥4

X
,

by invoking (13), the Sobolev embedding theorem, and the fact that T (Ψ) ≤ Ψ. Combining
further all our estimates so far, we finally infer that∫

Ω

∫
Ωc

|T (Ψ)(x)− T (Ψ)(y)|2

|x− y|3
dx dy ≤ C

∥∥Ψ
∥∥2

X

(
1 +

∥∥Ψ
∥∥4

X

)
,

so that T is well-defined from X†sym into itself, and maps bounded sets into bounded sets.

We next turn to the compactness properties. Let Ψ] be a Steiner symmetric function in X†sym.
We claim that ∫

|z|≥R

∣∣T (Ψ])
∣∣2 ≤ 2

3
2

π
3
2k2R

∥∥T (Ψ])
∥∥2

X

∥∥Ψ]
∥∥2

L4 , (17)

for all R ≥ 1. Indeed, let κ be a positive number to be fixed later, and set Ux := B(x, κ/R)∩Ωc

for all x ∈ H. We estimate∫
|z(x)|≥R

∣∣T (Ψ])(x)
∣∣2 dx ≤ ∫

|z(x)|≥R

κ3

R3L2(Ux)

∫
Ux

|T (Ψ])(x)− T (Ψ])(y)|2

|x− y|3
dy dx.

As a consequence of the Steiner symmetry of Ψ], and (13), we have

L1
({
r s.t. (r, z) ∈ Ωc for some |z| ≥ R

})
≤ 1

2Rk4

∥∥Ψ
∥∥4

L4 .

We now fix κ such that πk4κ2 = 2‖Ψ‖4L4 . As a consequence, computing the area of a disc minus
a strip gives

L2(Ux) ≥ πκ2

R2
−
‖Ψ‖4L4

k4R2
=
‖Ψ‖4L4

k4R2
,

so that (17) follows.

Similarly, we have ∫
|r|≥R

∣∣T (Ψ])
∣∣2 ≤ 1

(cR+ k)2

∥∥Ψ]
∥∥4

L4 . (18)

Indeed, we deduce from the definition of Ω that∫
|r|≥R

∣∣T (Ψ])
∣∣2 ≤ L2

(
Ω ∩ {(r, z) ∈ H s.t. |r| ≥ R}

) 1
2
∥∥Ψ]

∥∥2

L4 ,

and also
L2
(
Ω ∩ {(r, z) ∈ H s.t. |r| ≥ R}

)
≤ 1

(cR+ k)4

∫
Ω∩{|r|≥R}

(
Ψ]
)4
.

The conclusion then follows from the Rellich compactness theorem (at the local level) combined
with the decay estimates in (17) and (18).

3.5 Proof of Proposition 2

It first follows from the definition of N and Lemma 3 that∫
H
f(Ψ∗ − cr − k) Ψ∗ ≥

β

4
.
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In particular, (Ψ∗− cr−k)† 6= 0, so that by Proposition 1, there exists a unique positive number
t∗ such that t∗Ψ∗ ∈ N . We shall prove that t∗ = 1. Indeed, we have

α = lim
n→+∞

E(Ψn) ≥ lim inf
n→+∞

E(t∗Ψn),

by Proposition 1, and
lim inf
n→+∞

E(t∗Ψn) ≥ E(t∗Ψ∗) ≥ α,

by Lemma 3, and since t∗Ψ∗ ∈ N . It follows that all these inequalities are equalities. In
particular, we infer that limn→+∞ ‖Ψn‖2X = ‖Ψ∗‖2X , from which the strong convergence of Ψn

towards Ψ∗ in X follows. The latter implies that Ψ∗ ∈ N , and therefore, that t∗ = 1 and
E(Ψ∗) = α.

3.6 Proof of Proposition 3

We already know that T (Ψ∗) ∈ L4(R2). Since the support of T (Ψ∗) has finite measure, this
implies that T (Ψ∗) ∈ L1(R2). Let Θ∗ be defined through (3), where Ψ is replaced by Ψ∗. It
follows from (H4) that

Θ∗ ∈ L
q
ν (R2), ∀ ν ≤ q ≤ 4.

Consider next the function Ψ̃∗ given by the representation formula

Ψ̃∗(x) :=
1

2π

∫
R2

Θ∗(y)

|x− y|
dy.

It follows from the weighted inequalities for singular integrals in [8, Chapter 5, Theorems 1 and
2] that

Ψ̃∗ ∈ Ẇ 1,q(R2), ∀1 < q ≤ 4

ν
.

Moreover, by the Hardy-Littlewood-Sobolev inequality, we have

Ψ̃∗ ∈ Lq(R2), ∀2 < q ≤ 4

ν − 2
.

Hence, we deduce from standard interpolation that Ψ̃∗ ∈ Xsym. For ϕ ∈ Xsym∩C∞c (R2), a direct
computation provides 〈

Ψ̃∗, ϕ
〉
X

=

∫
R2

Θ∗ϕ.

On the other hand, since Ψ∗ is a critical point of E, we also have〈
Ψ∗, ϕ

〉
X

=

∫
R2

Θ∗ϕ.

By density of smooth compactly supported functions in Xsym, it follows that Ψ̃∗ = Ψ∗, and we
may invoke a direct Lp-type bootstrap argument to deduce that Ψ∗ is bounded and uniformly
continuous on R2. In order to deduce from a further bootstrap argument that Ψ∗ is smooth, we
only need to check that the possible discontinuity at r = 0 introduced by the definition (3) does
not arise. This follows from the mirror symmetry assumption on Ψ∗, and the fact that Ψ∗ is
already known to be uniformly continuous, so that T (Ψ∗) vanishes in an open strip containing
the axis r = 0, and therefore Θ∗ has at least the same regularity as Ψ∗.

It remains to compute the decay of Ψ∗. For that purpose, let x ∈ R2 be such that |x| ≥ 1.
We write

2πΨ∗(x) =

∫
|x−y|≤ |x|

2

Θ∗(y)

|x− y|
dy +

∫
|x−y|≥ |x|

2

Θ∗(y)

|x− y|
dy.
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On the one hand, we estimate∫
|x−y|≥ |x|

2

Θ∗(y)

|x− y|
dy ≤ C

|x|

∫
R2

|T (Ψ∗)|ν ≤
C

|x|
. (19)

On the other hand, since Ψ∗ is Steiner symmetric, it follows from (17) and (18) that∫
|x−y|≤ |x|

2

T (Ψ∗)
2(y) dy ≤ C

|x|
. (20)

We infer from the Hölder inequality and (20) that∫
|x−y|≤ |x|

2

Θ∗(y)

|x− y|
dy ≤

(∫
|z|≤ |x|

2

dz

|z|
5
3

) 3
5
(∫
|y−x|≤ |x|

2

T (Ψ∗(y))
5ν
2 dy

) 2
5

≤ C

|x|
1
5

‖Ψ∗‖
ν− 4

5
L∞ . (21)

Combining (19) and (21), we deduce that

|Ψ∗(x)| ≤ C

(1 + |x|)
1
5

, ∀x ∈ R2.

In view of the positive cut-off level k entering in the definition of T , the latter implies that T (Ψ∗),
and therefore Θ∗, have compact support. In turn, this implies that the left-hand side of (21)
vanishes for |x| large. The conclusion follows from (19).
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