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Abstract

We prove the non-existence of non-constant travelling waves of finite energy and of speed
c >
√

2 in the Gross-Pitaevskii equation in dimension N ≥ 2.

Introduction

In this paper, we will focus on the Gross-Pitaevskii equation

i∂tu = ∆u+ u(1− |u|2). (1)

One of the motivations for this equation is the analysis of Bose-Einstein condensation, which
describes the behaviour of interacting bosons near absolute zero. When condensation occurs,
equation (1) might be used as a model for the Bose condensate (see [4] for more details). In
particular, this model is relevant to describe Bose-condensed gases. The model is also sometimes
proposed to describe the superfluid state of Helium II, though in this case the interactions
between particles are important and cannot be neglected at temperature different from zero.

In order to describe this condensation, E.P. Gross [8] and L.P. Pitaevskii [12] considered a
set of N bosons of mass m that fill a volume V : they then assumed almost all bosons are Bose-
condensed in the fundamental state of energy. Therefore, they can be described by a macroscopic
wave function Ψ. They then deduced the Gross-Pitaevskii equation satisfied by the function Ψ
from a Hartree-Fock approach,

i}∂tΨ +
}2

2m
∆Ψ−Ψ

∫
V
|Ψ(x′, t)|2U(x− x′)dx′ = 0.

Here, U(x−x′) denotes the interaction between the bosons at positions x and x′: this interaction
being of very short range, it is often approached by U0 δ(x−x′). Thus, denoting Eb, the average
energy level per unit mass of a boson, and,

u(t, x) = e
−imEbt

} Ψ(t, x),

they computed the equation

i}∂tu+
}2

2m
∆u+mEbu− U0u|u|2 = 0.

They finally rescaled the equation by taking the mean density ρ0 =
√

mEb
U0

as unity, }√
2m2Eb

as

unit length, and, }
mEb

as unit time, in order to obtain the dimensionless equation

i∂tu+ ∆u+ u(1− |u|2) = 0. (1)
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At this point, we can write the hydrodynamic form of this equation by using the Madelung
transform [11],

u =
√
ρeiθ,

which is only meaningful where ρ does not vanish. Denoting v = 2∇θ, we deduce the equations{
∂tρ+ div(ρv) = 0,
ρ(∂tv + v.∇v) +∇ρ2 = ρ∇(∆ρ

ρ −
|∇ρ|2
2ρ2

).

Those equations are similar to the Euler equations for a irrotational ideal fluid with pressure
p(ρ) = ρ2: the term of the right member is then considered as a quantic pressure term. Here,
we can remark that the sound speed is cs =

√
2.

In this article, we will consider equation (1) in the space RN for every integer N ≥ 2: we can
notice that this equation is associated to the energy

E(u) =
1
2

∫
RN

|∇u|2 +
1
4

∫
RN

(1− |u|2)2 =
∫

RN

e(u).

We will study the travelling waves of finite energy and of speed c ≥ 0 for this equation i.e. the
solutions u which are of the form

u(t, x) = v(x1 − ct, . . . , xN ).

The simplified equation for v, which we will consider now, is

ic∂1v + ∆v + v(1− |v|2) = 0. (2)

C.A. Jones, S.J. Putterman and P.H. Roberts [10, 9] first considered formally and numerically
those particular solutions because they suppose they play an important role in the long time
dynamics of general solutions: they conjectured that non-constant travelling waves only exist
when their speed c is in the interval ]0,

√
2[ ie they all are subsonic. They then noticed the

apparition of vortices for those solutions when c tends to 0 in dimension two (two parallel
oppositely directed vortices) and in dimension three (a vortex ring). They also gave for each
value of c, the asymptotic development at infinity in dimension two,

v(x)− 1 ∼
|x|→+∞

iαx1

x2
1 + (1− c2

2 )x2
2

and in dimension three,

v(x)− 1 ∼
|x|→+∞

iαx1

(x2
1 + (1− c2

2 )(x2
2 + x2

3))
3
2

,

where the constant α is the stretched dipole coefficient.

F. Béthuel and J.C. Saut [3, 2] first studied mathematically those travelling waves: they
proved their existence in dimension two when c is small and the apparition of vortices in this
case. They also gave a mathematical proof for their limit at infinity.
In dimension N ≥ 3, F. Béthuel, G. Orlandi and D. Smets [1] showed their existence when c is
small and the apparition of a vortex ring.
In every dimension, A. Farina [5] proved a universal bound for their modulus.
Finally, we proved their uniform convergence to a constant of modulus one in dimension N ≥ 3
[6], and also studied their decay at infinity in dimension N ≥ 2 [7].

In this paper, we will complete all those results by the following theorem.

2



Theorem 1. In dimension N ≥ 2, a solution of equation (2) of finite energy and speed c >
√

2
is constant.

This paper will be organised around the proof of Theorem 1. In the first step, we will write
the equation satisfied by η = 1−|v|2. Then, we will derive a new integral identity when c >

√
2:

this is the crucial step of the proof of Theorem 1. Finally, we will write the Pohozaev identities
in order to prove that the energy E(v) vanishes and that the travelling wave v is constant.

1 Equation satisfied by η

In this part, we will write the equation satisfied by the variable η = 1− |v|2 for every c ≥ 0: in
particular, the results in this section (i.e. Propositions 1, 2 and 3) are valid for every c ≥ 0. We
first recall two useful propositions yet mentioned in [6, 7] and based on arguments taken from
F. Béthuel and J.C. Saut [3, 2].

Proposition 1. For every c ≥ 0, if v is a solution of equation (2) in L1
loc(RN ) of finite energy,

then v is regular, bounded and its gradient belongs to all the spaces W k,p(RN ) for k ∈ N and
p ∈ [2,+∞].

Thus, a travelling wave is a regular function and a classical solution of equation (2), which
will simplify the following discussion.

Proposition 2. The modulus ρ of v satisfies

ρ(x) →
|x|→+∞

1.

Proof. Indeed, the function η2 is uniformly continuous because v is bounded and lipschitzian by
Proposition 1. As

∫
RN η

2 is finite, η converges uniformly to 0 at infinity, which completes the
proof of this proposition.

Thus, the function ρ does not vanish at infinity, and we can define a regular function θ on a
neighborhood of infinity such that v can be written

v = ρeiθ.

Denoting ψ, a regular function from RN to [0, 1] such that ψ = 0 on a neighborhood of Z =
{x ∈ RN , ρ(x) = 0}, and ψ = 1 on a neighbourhood of infinity, and denoting v = v1 + iv2, we
can write the equation satisfied by the function η:

Proposition 3. For every c ≥ 0, the function η satisfies the equation

∆2η − 2∆η + c2∂2
1,1η = −∆F + 2c∂1div(G), (3)

where
F = 2|∇v|2 + 2η2 + 2c(v1∂1v2 − v2∂1v1)− 2c∂1(ψθ)

and
G = v1∇v2 − v2∇v1 −∇(ψθ).
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Proof. By equation (2), we have

∆v1 − c∂1v2 + v1(1− |v|2) = 0 (4)

∆v2 + c∂1v1 + v2(1− |v|2) = 0. (5)

We then compute

∆2η − 2∆η + c2∂2
1,1η = −2∆|∇v|2 − 2∆(v.∆v)− 2∆η + c2∂2

1,1η,

and by equations (4)-(5), we have on one hand

v.∆v = v1∆v1 + v2∆v2 = c(v1∂1v2 − v2∂1v1)− |v|2η,

and, on the other hand,

c∂1η = −2c(v1∂1v1 + v2∂1v2) = 2(∆v2v1 −∆v1v2) = 2div(∇v2v1 −∇v1v2).

Therefore, we finally get

∆2η − 2∆η + c2∂2
1,1η = −2∆|∇v|2 − 2∆η2 − 2c∆(v1∂1v2 − v2∂1v1)

+ 2c∂1div(v1∇v2 − v2∇v1)

= −∆(2|∇v|2 + 2η2 + 2c(v1∂1v2 − v2∂1v1)− 2c∂1(ψθ))
+ 2c∂1div(v1∇v2 − v2∇v1 −∇(ψθ))
= −∆F + 2c∂1div(G),

which is the desired equality.

2 A new integral relation

We have

Proposition 4. If c >
√

2, the travelling wave v satisfies the integral equation∫
RN

(|∇v|2 + η2) = c(
2
c2
− 1)

∫
RN

(v1∂1v2 − v2∂1v1 − ∂1(ψθ)). (6)

Remark 1. This is the only point where we use the assumption c >
√

2.

For the proof, we use

Lemma 1. F and G belong to the space W 2,1(RN ).

Proof. Indeed, G is regular and satisfies at infinity

G = (ρ2 − 1)∇θ.

By Proposition 1, the functions η and ∇v belong to H2(RN ) ∩W 2,∞(RN ): since

|∇v|2 = |∇ρ|2 + ρ2|∇θ|2,

and since ρ uniformly converges to 1 at infinity by Proposition 2, the function ∇θ belongs to
H2∩W 2,∞ on a neighbourhood of infinity: thus, the function G belongs to the space W 2,1(RN ).
Since

F = 2(|∇v|2 + η2) + 2cG1,

the function F also belongs to this space, which completes the proof of Lemma 1.
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Proof of Proposition 4. By Proposition 1, the function η belongs to H4(RN ), and we can write
by taking the Fourier transformation of equation (3)

∀ξ ∈ RN , (|ξ|4 + 2|ξ|2 − c2ξ2
1)η̂(ξ) = |ξ|2F̂ (ξ)− 2c

N∑
j=1

ξ1ξjĜj(ξ) := H(ξ). (7)

Consider the set
Γ = {ξ ∈ RN , |ξ|4 + 2|ξ|2 − c2ξ2

1 = 0}.

This set is reduced to {0} when c ≤
√

2, but, when c >
√

2, it is a regular hypersurface of
codimension 1 except at {0}: in dimension 2, it has the geometry of a bretzel, and in higher
dimensions, it has the geometry of two spheres linked at some point. Indeed, Γ is a surface
of revolution around axis x1: in spherical coordinates ξ = (r cos(α), r sin(α) cos(β), . . .), it is
described by the equation

r2 = c2 cos2(α)− 2.

In particular, we notice that there are two sequences (xn)n∈N and (yn)n∈N of points of Γ \ {0}
which tend to 0 when n tends to +∞ and which satisfy

xn
|xn|

→
n→+∞

(
2
c2
,

√
1− 2

c2
, 0, . . .), and,

yn
|yn|

→
n→+∞

(
2
c2
,−

√
1− 2

c2
, 0, . . .). (8)

Coming back to the study of equation (7), we claim that

Lemma 2. The function H defined by equation (7) is continuous on RN and satisfies

H = 0 on Γ.

Proof of Lemma 2. The first assertion follows from Lemma 1: indeed, since the functions F and
G belong to the space W 2,1(RN ), the functions ξ 7→ |ξ|2F̂ (ξ) and ξ 7→ ξ1ξjĜj(ξ) are continuous
on RN , and therefore, the function H is continuous on RN too.
In order to prove the second assertion, we argue by contradiction and assume there is some point
ξ0 ∈ Γ \ {0, (

√
c2 − 2, 0, . . . , 0)} such that

H(ξ0) 6= 0.

Since the function H is continuous on RN , there is some neighbourhood V of the point ξ0 and
some strictly positive number A such that

∀ξ ∈ V, |H(ξ)| ≥ A.

Hence, we have by equation (7)

∀ξ ∈ V \ Γ, |η̂(ξ)|2 ≥ A2

(|ξ|4 + 2|ξ|2 − c2ξ2
1)2

.

Integrating this relation and using spherical coordinates, we get∫
V \Γ
|η̂(ξ)|2dξ ≥ A2

∫
V \Γ

dξ

(|ξ|4 + 2|ξ|2 − c2ξ2
1)2

≥ AN
∫
V \Γ∩R×R+

sN−2dsdξ1

((s2 + ξ2
1)2 + 2s2 + (2− c2)ξ2

1)2

≥ AN
∫
V \Γ∩R+×[0,π]

rN−1 sinN−2(α)drdα
r4(r2 + 2− c2 cos2(α))2.
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Thus, denoting
ξ0 = (r0 cos(α0), r0 sin(α0) cos(β0), . . .),

there is some real number ε > 0 such that∫
V \Γ
|η̂(ξ)|2dξ ≥ AN

∫ r0+ε

r0−ε

∫ α0+ε

α0−ε

rN−1 sinN−2(α)drdα
r4(r2 + 2− c2 cos2(α))2

:= ANI(α0, r0, ε).

Since ξ0 ∈ Γ \ {0, (
√
c2 − 2, 0, . . . , 0)}, r0 is different from 0 and α0 is different from 0 and π

2 ,
and so, we can compute for ε sufficiently small

I(α0, r0, ε) ≥ A(α0, r0, ε)
∫ r0+ε

r0−ε

∫ α0+ε

α0−ε

drdα

(r2 + 2− c2 cos2(α))2
.

By doing the change of variable r =
√
c2cos2(β)− 2, we know that there is some real number

δ > 0 such that

I(α0, r0, ε) ≥ A(α0, r0, ε)
∫ α0+δ

α0−δ

∫ α0+δ

α0−δ

dβdα

(c2 cos2(β)− c2 cos2(α))2
,

and finally, by denoting a = α− α0 and b = β − α0, we get

I(α0, r0, ε) ≥ A(α0, r0, ε, c)
∫ δ

−δ

∫ δ

−δ

dadb

(cos2(b+ α0)− cos2(a+ α0))2

≥ A(α0, r0, ε, c)
∫ δ

−δ

∫ δ

−δ

dadb

(cos(2b+ 2α0)− cos(2a+ 2α0))2

≥ A(α0, r0, ε, c)
∫ δ

−δ

∫ δ

−δ

dadb

(sin(b− a))2
.

Since the function (a, b) 7→ 1
(sin(b−a))2

is not integrable at the origin in R2, the integral I(α0, r0, ε)
is not finite and we can conclude that∫

V \Γ
|η̂(ξ)|2dξ = +∞.

Since the energy of the function v is finite, so is the integral
∫

RN η
2, and by Plancherel theorem,

we deduce ∫
RN

|η̂(ξ)|2dξ < +∞,

which leads to a contradiction and proves that H is identically equal to 0 on the set Γ \
{0, (
√
c2 − 2, 0, . . . , 0)}. The second assertion of Lemma 2 then follows from the continuity

of the function H.

End of the proof of Proposition 4. By Lemma 2, we now know that

∀n ∈ N, H(xn) = 0,

which gives by dividing by |xn|2,

∀n ∈ N, F̂ (xn) = 2c
N∑
j=1

(xn)1

|xn|
(xn)j
|xn|

Ĝj(xn).
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By continuity of the functions F̂ and Ĝj , we can take the limit as xn → 0 of this expression and
obtain by assertion 8

F̂ (0) =
4
c
Ĝ1(0) + 2c

√
1− 2

c2
Ĝ2(0).

Likewise, we know that
∀n ∈ N, H(yn) = 0,

which gives by the same method,

F̂ (0) =
4
c
Ĝ1(0)− 2c

√
1− 2

c2
Ĝ2(0).

Finally, we have

F̂ (0) =
4
c
Ĝ1(0),

so that, ∫
RN

F (x)dx =
4
c

∫
RN

G1(x)dx.

The conclusion follows from the expression of the functions F and G.

3 Pohozaev identities

We now prove for sake of completeness two well-known identities based on the use of Pohozaev
multipliers (See [10, 9, 3, 1] for more details). Those estimates do not use the fact that c >

√
2.

Proposition 5. Let c ≥ 0. A finite energy solution v to equation (2) satisfies the two identities

E(v) =
∫

RN

|∂1v|2, (9)

∀2 ≤ j ≤ N,E(v) =
∫

RN

|∂jv|2 +
c

2

∫
RN

(v2∂1v1 − v1∂1v2 + ∂1(ψθ)). (10)

Proof. We first fix some real number R > 0 and we multiply equation (2) by Pohozaev multiplier
x1∂1v on the ball B(0, R) ∫

B(0,R)
(∆v.x1∂1v + x1∂1v.v(1− |v|2)) = 0. (11)

Integrating by parts, we compute∫
B(0,R)

∆v.x1∂1v =
∫
B(0,R)

|∇v|2

2
−

∫
B(0,R)

|∂1v|2 +
∫
S(0,R)

x1∂1v.∂νv

−
∫
S(0,R)

ν1x1
|∇v|2

2
,

and ∫
B(0,R)

x1∂1v.v(1− |v|2) =
∫
B(0,R)

(1− |v|2)2

4
−

∫
S(0,R)

x1ν1
(1− |v|2)2

4
.

By equation (11), we then get∫
B(0,R)

e(v) =
∫
B(0,R)

|∂1v|2 −
∫
S(0,R)

x1∂1v.∂νv +
∫
S(0,R)

ν1x1e(v). (12)
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On one hand, by Proposition 1, we know that∫
B(0,R)

e(v)−
∫
B(0,R)

|∂1v|2 →
R→+∞

E(v)−
∫

RN

|∂1v|2.

On the other hand, we have

|
∫
S(0,R)

x1∂1v.∂νv − ν1x1e(v)| ≤ AR
∫
S(0,R)

e(v).

Since the integral
∫

R+
(
∫
S(0,R) e(v))dR is finite, there are some positive real numbers Rn such

that Rn →
n→+∞

+∞ and

∀n ∈ N, Rn
∫
S(0,Rn)

e(v) ≤ 1
ln(Rn)

,

which gives ∫
S(0,Rn)

(x1∂1v.∂νv − ν1x1e(v)) →
n→+∞

0,

and finally, by equation (12),

E(v) =
∫

RN

|∂1v|2.

In order to prove the second identity, we multiply equation (2) by Pohozaev multiplier xj∂jv on
the ball B(0, R) ∫

B(0,R)
(∆v.xj∂jv + ic∂1v.xj∂jv + xj∂jv.v(1− |v|2)) = 0. (13)

Integrating by parts, we compute∫
B(0,R)

∆v.xj∂jv =
∫
B(0,R)

|∇v|2

2
−

∫
B(0,R)

|∂jv|2 +
∫
S(0,R)

xj∂jv.∂νv

−
∫
S(0,R)

νjxj
|∇v|2

2
,

and ∫
B(0,R)

xj∂jv.v(1− |v|2) =
∫
B(0,R)

(1− |v|2)2

4
−

∫
S(0,R)

xjνj
(1− |v|2)2

4
.

If R is sufficiently large such as ψ = 1 on S(0, R), we also compute∫
B(0,R)

i∂1v.xj∂jv =
1
2

(
∫
S(0,R)

xj(ρ2 − 1)(νj∂1θ − ν1∂jθ)

−
∫
B(0,R)

(v2∂1v1 − v1∂1v2 + ∂1(ψθ))),

which leads to∫
B(0,R)

e(v) =
∫
B(0,R)

|∂jv|2 +
c

2

∫
B(0,R)

(v2∂1v1 − v1∂1v2 + ∂1(ψθ))

+
∫
S(0,R)

(xjνje(v)− xj∂jv.∂νv − xj(ρ2 − 1)(νj∂1θ − ν1∂jθ)).
(14)
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On one hand, by Proposition 1, we know that∫
B(0,R)

e(v)−
∫
B(0,R)

|∂jv|2 −
c

2

∫
B(0,R)

(v2∂1v1 − v1∂1v2 + ∂1(ψθ))

→
R→+∞

E(v)−
∫

RN

|∂jv|2 −
c

2

∫
RN

(v2∂1v1 − v1∂1v2 + ∂1(ψθ)).

On the other hand, we have

|
∫
S(0,R)

(xjνje(v)− xj∂jv.∂νv − xj(ρ2 − 1)(νj∂1θ − ν1∂jθ))| ≤ AR
∫
S(0,R)

e(v).

By using the sequence of positive real numbers Rn constructed for proving equality (9), we get∫
S(0,Rn)

(xjνje(v)− xj∂jv.∂νv − xj(ρ2 − 1)(νj∂1θ − ν1∂jθ)) →
n→+∞

0,

and finally, by equation (14),

E(v) =
∫

RN

|∂jv|2 +
c

2

∫
RN

(v2∂1v1 − v1∂1v2 + ∂1(ψθ)).

4 Conclusion

We now complete the proof of Theorem 1. By Proposition 5, we have

E(v) =
∫

RN

|∂1v|2,

which gives by denoting ∇⊥v = (∂2v, . . . , ∂Nv),

1
2

∫
RN

|∇⊥v|2 +
1
4

∫
RN

η2 =
1
2

∫
RN

|∂1v|2 =
E(v)

2
,

and ∫
RN

η2 = 2E(v)− 2
∫

RN

|∇⊥v|2. (15)

We then compute ∫
RN

(|∇v|2 + η2) = 3E(v)−
∫

RN

|∇⊥v|2, (16)

and, by Proposition 5,

c

∫
RN

(v1∂1v2 − v2∂1v1 − ∂1(ψθ)) =
2

N − 1

∫
RN

|∇⊥v|2 − 2E(v). (17)

Proposition 4 gives∫
RN

(|∇v|2 + η2) = c(
2
c2
− 1)

∫
RN

(v1∂1v2 − v2∂1v1 − ∂1(ψθ)),

which leads by equations (16)-(17) to

(c2 + 4)(N − 1)E(v) = ((N − 3)c2 + 4)
∫

RN

|∇⊥v|2. (18)
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If N = 2, we get

(c2 + 4)E(v) = (4− c2)
∫

RN

|∇⊥v|2,

which gives by equation (15),

c2 + 4
2

∫
RN

η2 = −2c2

∫
RN

|∇⊥v|2 = 0.

Finally, we have involving equation (15) once more

E(v) = 0.

If N ≥ 3, since by equation (15), ∫
RN

|∇⊥v|2 ≤ E(v),

equation (18) gives
(2c2 + 4N − 8)E(v) ≤ 0,

and finally, E(v) is also equal to 0 in this case.

In conclusion, since E(v) = 0, the function∇v vanishes on RN and v is a constant (of modulus
one since η also vanishes on RN ).

Acknowledgements. The author is grateful to F. Béthuel, G. Orlandi, J.C. Saut and D. Smets
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