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Abstract

We study the limit at infinity of sonic travelling waves of finite energy in the Gross-
Pitaevskii equation in dimension N ≥ 2 and prove the non-existence of non-constant sonic
travelling waves of finite energy in dimension two.

Introduction

In this article, we focus on the travelling waves of speed c > 0 in the Gross-Pitaevskii equation

i∂tu = ∆u+ u(1− |u|2), (1)

which are of the form
u(t, x) = v(x1 − ct, . . . , xN ).

The equation for v, which we will study now, is

ic∂1v + ∆v + v(1− |v|2) = 0. (2)

The Gross-Pitaevskii equation is a physical model for Bose-Einstein condensation. It is formally
associated to the energy

E(v) =
1
2

∫

RN

|∇v|2 +
1
4

∫

RN

(1− |v|2)2 =
∫

RN

e(v), (3)

and to the momentum
~P (v) =

1
2

∫

RN

i∇v.v. (4)

Equation (1) presents an hydrodynamic form. Indeed, if we make use of Madelung transform
[15]

v =
√
ρeiθ

(which is only meaningful where ρ does not vanish), and if we denote

v = 2∇θ,

we compute {
∂tρ+ div(ρv) = 0,
ρ(∂tv + v.∇v) +∇ρ2 = ρ∇(∆ρ

ρ − |∇ρ|2
2ρ2

).
(5)

1Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (Paris 6), Bôıte Courrier 187, 4, place
Jussieu, 75252 Paris cedex 05, France. E-mail: gravejat@ann.jussieu.fr
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Equations (5) look like Euler equations for an irrotational ideal fluid with pressure p(ρ) = ρ2 (see
[4, 1] for more details). In particular, the sound speed of this fluid near the constant solution
u = 1 is

cs =
√

2.

The non-constant travelling waves of finite energy play a great role in the long time dynamics
of general solutions. This motivates their study by C.A. Jones, S.J. Putterman and P.H. Roberts
[13, 12]. In particular, they conjectured that they can only exist when

0 < c <
√

2,

i.e. they are subsonic. F. Béthuel and J.C. Saut [3] first studied mathematically this conjecture.
In dimension N ≥ 2, they proved that all the travelling waves of finite energy and of speed c = 0
are constant. On the other hand, we proved in [9] the non-existence of non-constant travelling
waves of finite energy and of speed c >

√
2 in dimension N ≥ 2. Thus, the non-existence

conjecture of C.A. Jones, S.J. Putterman and P.H. Roberts remains an open problem only in
the case c =

√
2. That is the reason why we focus here on the sonic travelling waves of finite

energy, i.e. we assume
c =

√
2.

In particular, we will prove their conjecture in dimension two.

Theorem 1. In dimension two, a travelling wave for the Gross-Pitaevskii equation of finite
energy and speed c =

√
2 is constant.

Remarks 1. 1. Theorem 1 holds also in dimension one, but its proof is fairly elementary. Indeed,
equation (2) is entirely integrable in dimension one. If c ≥ √

2, the solutions v of equation (2)
are constant functions of modulus one. Instead, if 0 < c <

√
2, up to a multiplication by a

constant of modulus one and a translation, the solutions v of equation (2) are equal either to
the constant function 1 or to the function

v(x) =

√√√√√1− 2− c2

2ch2

(√
2−c2
2 x

)exp
(
i arctan

(
e
√

2−c2x + c2 − 1
c
√

2− c2

)
− i arctan

(
c√

2− c2

))
.

We refer to the appendix for more details (see also the article of M. Maris [16]).

2. In dimension two, F. Béthuel and J.C. Saut [3, 2] showed the existence of travelling waves
of finite energy when c is small and for a sequence of values of c tending to

√
2.

In dimension N ≥ 3, Theorem 1 is still open. We believe that a positive answer to the
non-existence of non-constant sonic travelling waves of finite energy would be an important step
towards another fundamental conjecture: the non-existence of non-constant travelling waves of
small energy 1. Indeed, if the speed c =

√
2 is excluded, we may use the rescaling given by

the parameter ε =
√

2− c2 to prove that the travelling waves for the Gross-Pitaevskii equation
converge towards the solitary waves for the Kadomtsev-Petviashvili equation when ε tends to
0 (see the articles of A. de Bouard and J.C. Saut [5, 6] for more details on the solitary waves
for the Kadomtsev-Petviashvili equation). In particular, in dimension N ≥ 3, the energy of a
non-constant travelling wave for the Gross-Pitaevskii equation would tend to +∞ when ε tends
to 0, which would presumably prevent the existence of non-constant travelling waves of small
energy.

1In particular, if this is true, a scattering theory for small energy solutions to equation (1) is possible, although
presumably difficult.
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In order to prove the non-existence of non-constant sonic travelling waves of finite energy
in dimension N ≥ 3, one fruitful argument seems to study their behaviour at infinity (see the
conclusion for more details). In particular, we can already state their convergence at infinity
towards a constant of modulus one.

Theorem 2. Let N ≥ 3 and v a travelling wave for the Gross-Pitaevskii equation of finite
energy and speed c =

√
2. There exists a constant λ∞ of modulus one such that

v(x) →
|x|→+∞

λ∞.

Remarks 2. 1. In dimension two, F. Béthuel and J.C. Saut [3] gave a mathematical evidence
of the limit at infinity of subsonic travelling waves of finite energy. We complemented their work
in dimension N ≥ 3 [8].

2. C.A. Jones, S.J. Putterman and P.H. Roberts [13, 12] derived a formal asymptotic ex-
pansion of subsonic travelling waves which are axisymmetric around axis x1. In dimension two,
they computed

v(x)− 1 ∼
|x|→+∞

iαx1

x2
1 + (1− c2

2 )x2
2

, (6)

while in dimension three, they obtained

v(x)− 1 ∼
|x|→+∞

iαx1

(x2
1 + (1− c2

2 )(x2
2 + x2

3))
3
2

. (7)

Here, the constant α is the stretched dipole coefficient linked to the energy E(v) and to the
scalar momentum p(v) = P1(v) by the formulae

2πα

√
1− c2

2
= cE(v) + 2

(
1− c2

4

)
p(v) (8)

in dimension two and
4πα =

c

2
E(v) + 2p(v) (9)

in dimension three. In [10, 11], we derived rigorously conjectures (6), (7), (8) and (9). However,
the study of the asymptotic behaviour of sonic travelling waves is much more involved than in
the subsonic case. Indeed, in the subsonic case, it relies on a lemma (Lemma 10 of [10]) which
is not valid anymore for c =

√
2.

3. In dimension N ≥ 3, F. Béthuel, G. Orlandi and D. Smets [1] showed the existence of
travelling waves of finite energy when c is small. A. Farina [7] proved a universal bound for their
modulus.

Our paper is organised around the proofs of Theorems 1 and 2. In the first part, we recall
some preliminary results yet mentioned in [8, 9, 10]. In particular, we derived some convolution
equations from equation (2). They are the basic ingredient of the proofs.
The second part is devoted to the proof of Theorem 1. It relies on the same argument as in
[9]: the singularity at the origin of the Fourier transforms of the kernels which appear in the
convolution equations of the first part.
Finally, the last part deals with the proof of Theorem 2. It follows from the use of the convolution
kernels as Fourier multipliers and from Proposition 2 of [8].
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1 Some convolution equations

In this part, we write some convolution equations which are the key ingredient of all the proofs
of this article. In order to state them, we first recall two useful propositions yet mentioned in
[8, 9, 10] and based on arguments taken from F. Béthuel and J.C. Saut [3, 2].

Proposition 1 ([10]). Let c > 0 and N ≥ 2. Consider a solution v of equation (2) in L1
loc(RN )

of finite energy. Then, v is of class C∞ and bounded on RN . Moreover, its gradient ∇v and the
function η := 1− ρ2 belong to all the spaces W k,p(RN ) for k ∈ N and p ∈ [2,+∞].

Remark 1. By Proposition 1, any weak solution of finite energy of (2) is a classical solution.

We deduce from Proposition 1 a first lemma which gives the convergence of the modulus of
a travelling wave at infinity.

Lemma 1 ([8, 9, 10]). Let c > 0 and N ≥ 2. Consider a solution v of equation (2) in L1
loc(RN )

of finite energy. The modulus ρ of v uniformly converges to 1 at infinity.

In particular, there is some real number R0 such that

ρ ≥ 1
2

on B(0, R0)c.

Thus, using a standard degree argument in dimension two, we can construct a lifting θ of v on
B(0, R0)c, that is a function in C∞(B(0, R0)c,R) such that

v = ρeiθ.

We next compute new equations for the new functions η and θ. However, since θ is not well-
defined on RN , we must introduce a cut-off function ψ ∈ C∞(RN , [0, 1]) such that

{
ψ = 0 on B(0, 2R0),
ψ = 1 on B(0, 3R0)c.

All the results in the following will be independent of the choice of R0 and ψ. Finally, we deduce

Proposition 2 ([10]). Let c > 0 and N ≥ 2. Consider a solution v of equation (2) in L1
loc(RN )

of finite energy. Then, the functions η and ψθ satisfy

∆2η − 2∆η + c2∂2
1,1η = −∆F − 2c∂1div(G) (10)

and
∆(ψθ) =

c

2
∂1η + div(G), (11)

where
F = 2|∇v|2 + 2η2 − 2ci∂1v.v − 2c∂1(ψθ) (12)

and
G = i∇v.v +∇(ψθ). (13)

Remark 2. The functions F and G are related to the density of energy and of momentum. In
order to clarify this claim, we must remove a difficulty in the definition of ~P (v). Indeed, the
integral which appears in definition (4) is not always convergent for a travelling wave of finite
energy. In order to give a rigorous definition of the momentum ~P (v), we state

~P (v) =
1
2

∫

RN

(i∇v.v +∇(ψθ)). (14)

This new definition is rather suitable (see for instance [9, 10, 11]). In particular, it is now
straightforward to link the functions F and G to the density of energy and of momentum.

4



Finally, equations (10) and (11) lead to the desired convolution equations

η = K0 ∗ F + 2
√

2
N∑

j=1

Kj ∗Gj (15)

and for every j ∈ {1, . . . , N},

∂j(ψθ) =
1√
2
Kj ∗ F + 2

N∑

k=1

Lj,k ∗Gk +
N∑

k=1

Rj,k ∗Gk (16)

where K0, Kj , Lj,k and Rj,k are the kernels of Fourier transform

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ⊥|2 , (17)

K̂j(ξ) =
ξ1ξj

|ξ|4 + 2|ξ⊥|2 , (18)

L̂j,k(ξ) =
ξ21ξjξk

|ξ|2(|ξ|4 + 2|ξ⊥|2) , (19)

R̂j,k(ξ) =
ξjξk
|ξ|2 . (20)

Remarks 3. 1. Here, we denoted ξ⊥ the variable given by

∀ξ ∈ RN , ξ⊥ = (ξ2, . . . , ξN ).

In particular, the value of |ξ⊥|2 is

|ξ⊥|2 =
N∑

j=2

ξ2j .

2. We only wrote equations (15) and (16) in the sonic case c =
√

2. However, we can compute
similar equations for other values of c.

Now, thanks to equations (15) and (16), we turn to the proofs of Theorems 1 and 2.

2 Non-existence of non-constant travelling waves of finite en-
ergy in dimension two

The proof of Theorem 1 relies on the form of the Fourier transforms of the kernels K0 and
Kj . They are singular at the origin, in particular in direction ξ1. In dimension two, we deduce
from this singularity a new integral relation (formula (21) just below), which provides the non-
existence of non-constant sonic travelling waves of finite energy.

Proposition 3. Let N = 2. Any sonic travelling wave v of finite energy satisfies the integral
equation ∫

R2

(|∇v|2 + η2) = 0. (21)

Remark 3. Actually, we recover formula (6) of [9]
∫

RN

(|∇v|2 + η2) = 2c
(

1− 2
c2

)
p(v),

in the specific case c =
√

2 and N = 2. As in the present paper, it was the key ingredient of the
non-existence of non-constant supersonic travelling waves of finite energy.

5



Theorem 1 is a direct consequence of Proposition 3.

Proof of Theorem 1. By equation (21), the gradient of v vanishes on R2. Therefore, v is constant
on R2. Moreover, it is a constant of modulus one since the function η also vanishes on R2 by
equation (21).

Now, it remains to prove Proposition 3. In order to explain the difficulty which appears in
dimension N ≥ 3, we keep in our analysis the dimension N ≥ 2 arbitrary and only specify the
case of dimension two at the very end.

Proof of Proposition 3. By Proposition 1, the functions η, F and G respectively belong to
H4(RN ), W 2,1(RN ) and W 2,1(RN ). Therefore, we can write for almost every ξ ∈ RN by taking
the Fourier transform of equation (15),

η̂(ξ) =
|ξ|2

|ξ|4 + 2|ξ⊥|2 F̂ (ξ) + 2
√

2
N∑

j=1

ξ1ξj
|ξ|4 + 2|ξ⊥|2 Ĝj(ξ). (22)

The strategy of the proof now relies on the finiteness of the energy. Indeed, since the energy
is finite, the function η belongs to L2(RN ). By Plancherel’s theorem, the function η̂ is also
in L2(RN ). On the other hand, equation (22) gives an expression of the function η̂. We are
going to integrate its square modulus on a suitable subset of RN and prove that this integral
cannot be finite unless equality (21) holds. The choice of the set of integration is motivated by
the singularity at the origin of the Fourier transforms of the kernels K0 and Kj . Indeed, by
formulae (17) and (18), they are both more singular in case ξ⊥ vanishes. That is the reason why
we are going to integrate the function |η̂|2 on the set

Ω = {ξ ∈ RN , 0 ≤ ξ1 ≤ 1, |ξ⊥| ≤ ξ21}.
Indeed, it follows from equation (22) that

∫

Ω
|η̂(ξ)|2dξ =

∫ 1

0

∫

|ξ⊥|≤ξ21

∣∣|ξ|2F̂ (ξ1, ξ⊥) + 2
√

2(ξ21Ĝ1(ξ1, ξ⊥) + ξ1ξ⊥.Ĝ⊥(ξ1, ξ⊥))
∣∣2

(|ξ|4 + 2|ξ⊥|2)2 dξ⊥dξ1.

Consider then the function H defined by

∀ξ1 ∈]0, 1], H(ξ1) =
∫

|y|≤ξ21

∣∣(|y|2 + ξ21)F̂ (ξ1, y) + 2
√

2(ξ21Ĝ1(ξ1, y) + ξ1y.Ĝ⊥(ξ1, y))
∣∣2

((|y|2 + ξ21)2 + 2|y|2)2 dy,

so that ∫

Ω
|η̂(ξ)|2dξ =

∫ 1

0
H(ξ1)dξ1. (23)

We claim that

Claim 1. If F̂ (0) + 2
√

2Ĝ1(0) 6= 0, then

H(ξ1) ∼
ξ1→0

(
|SN−2||F̂ (0) + 2

√
2Ĝ1(0)|2

∫ 1

−δN,2

sN−2

(1 + 2s2)2
ds

)
ξ
2(N−3)
1 .

Indeed, the function H satisfies for every ξ = (ξ1, rσ),

H(ξ1) =
∫ ξ21

−δN,2ξ
2
1

∫

SN−2

∣∣(r2 + ξ21)F̂ (ξ) + 2
√

2(ξ21Ĝ1(ξ) + ξ1rσ.Ĝ⊥(ξ))
∣∣2

((ξ21 + r2)2 + 2r2)2
rN−2dσdr

:=ξ2(N−3)
1 I(ξ1),
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where, denoting ξ′ = (ξ1, ξ21sσ), we let

I(ξ1) =
∫ 1

−δN,2

∫

SN−2

∣∣(s2ξ21 + 1)F̂ (ξ′) + 2
√

2Ĝ1(ξ′) + 2
√

2ξ1sσ.Ĝ⊥(ξ′)
∣∣2

((ξ21s2 + 1)2 + 2s2)2
sN−2dσds.

Moreover, by Proposition 1, the functions F and G belong to L1(RN ), so their Fourier transforms
are continuous on RN . Therefore, the dominated convergence theorem yields

I(ξ1) →
ξ1→0

|SN−2||F̂ (0) + 2
√

2Ĝ1(0)|2
∫ 1

−δN,2

sN−2

(1 + 2s2)2
ds.

In particular, if F̂ (0) + 2
√

2Ĝ1(0) 6= 0, it gives

H(ξ1) ∼
ξ1→0

(
|SN−2||F̂ (0) + 2

√
2Ĝ1(0)|2

∫ 1

−δN,2

sN−2

(1 + 2s2)2
ds

)
ξ
2(N−3)
1 ,

which is the desired result.

We next argue by contradiction and assume that

F̂ (0) + 2
√

2Ĝ1(0) 6= 0. (24)

If assertion (24) were true, then, by Claim 1,

H(ξ1) ∼
ξ1→0

Aξ
2(N−3)
1 .

However, in dimension two, the function ξ1 7→ 1
ξ21

is not integrable near 0. By formula (23), it
yields ∫

Ω
|η̂(ξ)|2dξ = +∞.

Thus, it gives a contradiction with the fact that the function η̂ is in L2(R2). Therefore, assump-
tion (24) does not hold and we find

F̂ (0) + 2
√

2Ĝ1(0) = 0.

However, by formulae (12) and (13),

F̂ (0) + 2
√

2Ĝ1(0) = 2
∫

R2

(|∇v|2 + η2 −
√

2i∂1v.v −
√

2∂1(ψθ)) +
√

8
∫

R2

(i∂1v.v + ∂1(ψθ))

= 2
∫

R2

(|∇v|2 + η2),

which gives ∫

R2

(|∇v|2 + η2) = 0.

Remark 4. The argument fails in dimension N ≥ 3 since the function ξ1 7→ ξ
2(N−3)
1 is then

integrable near 0.
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3 Limit at infinity in dimension N ≥ 3

Theorem 2 follows from two arguments.
• The first one is to improve the Lp-integrability of the functions η and ∇(ψθ), and of their
derivatives.

Proposition 4. Consider α ∈ NN such that |α| ≥ 2. Then, we claim

(i) (η,∇(ψθ)) ∈ Lp(RN ) for every p > 2N−1
2N−3 ,

(ii) (∇η, d2(ψθ)) ∈ Lp(RN ) for every p > 2N−1
2N−2 ,

(iii) (∂αη, ∂α∇(ψθ)) ∈ Lp(RN ) for every p > 1.

Proposition 4 follows from Lizorkin’s theorem [14].

Lizorkin’s Theorem 1 ([14]). Let 0 ≤ β < 1 and K̂ a bounded function in CN (RN \ {0}).
Assume

N∏

j=1

(ξkj+β
j )∂k11 . . . ∂kN

N K̂(ξ) ∈ L∞(RN )

as soon as (k1, . . . , kN ) ∈ {0, 1}N satisfies

0 ≤
N∑

j=1

kj ≤ N.

Then, K̂ is a multiplier from Lp(RN ) to L
p

1−βp (RN ) for every 1 < p < 1
β .

By Lizorkin’s theorem, the kernels K0, Kj and Lj,k are multipliers from some spaces Lp(RN )
to some other spaces Lq(RN ). For instance, the kernel K0 satisfies the assumptions of Li-
zorkin’s theorem for β = 2

2N−1 . Therefore, the function K̂0 is a Fourier multiplier from Lp(RN )

to L
(2N−1)p

2(N−p)−1 (RN ). By convolution equations (15) and (16), this enables to improve the Lp-
integrability of the functions η and ∇(ψθ), and of their derivatives.

• The second argument follows from Proposition 4. Since the function ∇v belongs to some
spaces W 1,p0(RN ) and W 1,p1(RN ) for 1 < p0 < N − 1 < p1 < +∞, we can use the following
proposition to prove the convergence of the function v at infinity.

Proposition 5 ([8]). Consider a smooth function v on RN and assume that N ≥ 3 and that the
gradient of v belongs to the spaces W 1,p0(RN ) and W 1,p1(RN ) where 1 < p0 < N−1 < p1 < +∞.
Then, there is a constant v∞ ∈ C which satisfies

v(x) →
|x|→+∞

v∞.

The proof of Theorem 2 is then a consequence of Propositions 4 and 5. That is the reason
why we first show Proposition 4.

Proof of Proposition 4. We split the proof in three steps. In the first one, we specify the form
of some derivatives of the Fourier transform of the kernel K0. Our goal is to prove that the
kernel K0 satisfies the assumptions of Lizorkin’s theorem in order to show that K̂0 is a Fourier
multiplier from some space Lp(RN ) to another space Lq(RN ).
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Step 1. Consider α ∈ {0, 1}N . Then, the function ∂αK̂0 writes

∀ξ ∈ RN \ {0}, ∂αK̂0(ξ) =
ξαPα(ξ)

(|ξ|4 + 2|ξ⊥|2)1+|α| , (25)

where Pα is a polynomial function of degree dα ≤ 2|α|+ 2 which satisfies

(i) For every j ∈ {1, . . . , N}, Pα is even in the variable ξj.

(ii) The term of lowest degree of Pα is equal to (−1)|α|−1(|α| − 1)!4|α||ξ⊥|2 if α1 = 1, and to
(−1)|α|−1|α|!4|α|ξ21 , if α1 = 0 and |α| 6= 0.

Step 1 follows from an inductive argument on |α|. Indeed, if |α| = 0 or |α| = 1, we compute
by formula (17) for every j ∈ {2, . . . , N},

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ⊥|2

∂1K̂0(ξ) =
ξ1(−2|ξ|4 + 4|ξ⊥|2)

(|ξ|4 + 2|ξ⊥|2)2

∂jK̂0(ξ) =
ξj(−2|ξ|4 + 4ξ21)
(|ξ|4 + 2|ξ⊥|2)2 .

Thus, Step 1 holds in this case.

Now, assume that Step 1 is valid for |α| = p ≥ 1 and fix some α ∈ {0, 1}N such that
|α| = p + 1. There are two cases to consider. If α1 = 0, there is some integer j ∈ {2, . . . , N}
such that αj = 1, so we can state

∂αK̂0 = ∂j∂
βK̂0

with |β| = p. Applying the inductive assumption, it yields for every ξ ∈ RN \ {0},

∂αK̂0(ξ) =
ξβ

(|ξ|4 + 2|ξ⊥|2)|α|+1

(
∂jPβ(ξ)(|ξ|4 + 2|ξ⊥|2)− (1 + |β|)Pβ(ξ)(4ξj |ξ|2 + 4ξj)

)
. (26)

However, by assumption (i), Pβ is even in every variable ξk, so there is some polynomial function
Rβ, even in every variable ξk, such that

∂jPβ(ξ) = ξjRβ(ξ).

Moreover, by assumption (ii), Rβ is either equal to 0 or the term of lowest degree of Rβ is of
degree at least equal to one.

Then, let us denote

Pα(ξ) = Rβ(ξ)(|ξ|4 + 2|ξ⊥|2)− 4(1 + |β|)Pβ(ξ)(|ξ|2 + 1). (27)

By the inductive assumption, the functions Pβ and Rβ are even in every variable ξk, so by
equation (27), Pα is also even in every variable ξk. Likewise, the term of lowest degree of Pβ
is equal to (−1)p−1p!4pξ21 and, if Rβ is not equal to 0, the term of lowest degree of Rβ is of
degree at least equal to one. Therefore, by equation (27), the term of lowest degree of Pα is
(−1)p(p + 1)!4p+1ξ21 . On the other hand, by the inductive assumption and formula (27), the
degree dα of Pα is less than 2|α|+ 2. Finally, equation (25) is a straightforward consequence of
equations (26) and (27). Therefore, the proof of the inductive step is valid in case α1 = 0.
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In the case α1 = 1, we can always assume that we first derivated K̂0 by the partial operator
∂1. Therefore, there is some integer j ∈ {2, . . . , N} such that αj = 1 and we can state

∂αK̂0 = ∂j∂
βK̂0

with |β| = p. Applying the inductive assumption, it yields for every ξ ∈ RN \ {0},

∂αK̂0(ξ) =
ξβ

(|ξ|4 + 2|ξ⊥|2)|α|+1

(
∂jPβ(ξ)(|ξ|4 + 2|ξ⊥|2)− 4(1 + |β|)ξjPβ(ξ)(1 + |ξ|2)

)
.

Likewise, by assumption (i), Pβ is even in every variable ξk, so there is some polynomial function
Rβ, even in every variable ξk, such that

∂jPβ(ξ) = ξjRβ(ξ).

Moreover, by assumption (ii), the term of lowest degree of Rβ is equal to 2(−1)p−1(p− 1)!4p.

Denoting
Pα(ξ) = Rβ(ξ)(|ξ|4 + 2|ξ⊥|2)− 4(1 + |β|)Pβ(ξ)(|ξ|2 + 1),

we can prove equation (25), assumptions (i) and (ii), and compute the suitable bound of the
degree of Pα by the same argument as in the case α1 = 0. By induction, this completes the
proof of Step 1.

In the second step, we use Step 1 and Lizorkin’s theorem to state some properties of the
Fourier multipliers K̂0, K̂j and L̂j,k.

Step 2. Let 1 < p < +∞. The functions K̂0, K̂j and L̂j,k are Fourier multipliers from Lp(RN )

to L
(2N−1)p

2(N−p)−1 (RN ) if 1 < p < N− 1
2 , while the functions d̂2K0, d̂2Kj and d̂2Lj,k are Lp-multipliers.

Indeed, consider α ∈ {0, 1}N and set β = 2
2N−1 . By equation (25), we compute

N∏

j=1

(ξαj+β
j )∂αK̂0(ξ) =

N∏

j=1

ξβj
ξ2αPα(ξ)

(|ξ|4 + 2|ξ⊥|2)1+|α| .

Therefore, by Step 1, if |ξ| ≥ 1,
∣∣∣∣∣∣

N∏

j=1

(ξαj+β
j )∂αK̂0(ξ)

∣∣∣∣∣∣
≤ A

|ξ|Nβ+4|α|+2

|ξ|4+4|α| ≤ A|ξ|Nβ−2 ≤ A.

On the other hand, if |ξ| ≤ 1, denoting ξ = ρσ where ρ ≥ 0 and σ ∈ SN−1, we compute by Step
1,

∣∣∣∣∣∣

N∏

j=1

(ξαj+β
j )∂αK̂0(ξ)

∣∣∣∣∣∣
≤ A

ρ2|α|+Nβ+2|σ⊥|(N−1)β+2|α|−2 max{ρ2, |σ⊥|2}
ρ2|α|+2(ρ2 + 2|σ⊥|2)1+|α|

≤ Amax{ρ2, |σ⊥|2}(2N−1)β−2 ≤ A.

Thus, it follows that

∀α ∈ {0, 1}N , ξ 7→
N∏

j=1

(ξαj+β
j )∂αK̂0(ξ) ∈ L∞(RN ).
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By Lizorkin’s theorem, K̂0 is a Fourier multiplier from Lp(RN ) to L
(2N−1)p

2(N−p)−1 (RN ) for every
1 < p < N − 1

2 .

Moreover, by equations (18) and (19), the Fourier transforms of the functions Kj and Lj,k
write

K̂j(ξ) =
ξ1ξj
|ξ|2 K̂0(ξ)

L̂j,k(ξ) =
ξ21ξjξk
|ξ|4 K̂0(ξ).

By the standard Riesz operator theory (see for instance the book of E.M. Stein and G. Weiss
[17] for more details), the functions ξ 7→ ξ1ξj

|ξ|2 and ξ 7→ ξ21ξjξk
|ξ|4 are Lp-multipliers for every p > 1.

Therefore, K̂j and L̂j,k are also Fourier multipliers from Lp(RN ) to L
(2N−1)p

2(N−p)−1 (RN ) for every
1 < p < N − 1

2 .

Now, consider the Fourier transform of the kernel ∆K0. Leibnitz’s formula yields for every
α ∈ {0, 1}N ,

∂α(|ξ|2K̂0(ξ)) = 2
N∑

j=1

δαj ,1ξj∂
βj
K̂0(ξ) + |ξ|2∂αK̂0(ξ),

where βj is defined by

∀k ∈ {1, . . . , N}, βjk =
{
αk, if k 6= j,
0, otherwise.

Therefore, we compute
∣∣∣∣∣∣

N∏

j=1

ξ
αj

j ∂α(|ξ|2K̂0(ξ))

∣∣∣∣∣∣
≤ A




N∑

j=1

( |ξ2α||Pβj (ξ)|
(|ξ|4 + 2|ξ⊥|2)|α|

)
+

|ξ|2|ξ2α||Pα(ξ)|
(|ξ|4 + 2|ξ⊥|2)1+|α|


 .

By Step 1, if |ξ| ≥ 1,
∣∣∣∣∣∣

N∏

j=1

ξ
αj

j ∂α(|ξ|2K̂0(ξ))

∣∣∣∣∣∣
≤ A

(
|ξ|4|α|
|ξ|4|α| +

|ξ|4|α|+4

|ξ|4|α|+4

)
≤ A.

Likewise, by Step 1, if |ξ| < 1, denoting ξ = ρσ where ρ ≥ 0 and σ ∈ SN−1,
∣∣∣∣∣∣

N∏

j=1

ξ
αj

j ∂α(|ξ|2K̂0(ξ))

∣∣∣∣∣∣
≤A

(
ρ2|α|+2|σ⊥|2|α|−2

ρ2|α|(ρ2 + 2|σ⊥|2)|α|
+
ρ4+2|α||σ⊥|2|α|−2 max{|σ⊥|2, ρ2}

ρ2|α|+2(ρ2 + 2|σ⊥|2)1+|α|

)

≤A,

which yields

∀α ∈ {0, 1}N , ξ 7→
N∏

j=1

ξ
αj

j ∂α∆̂K0(ξ) ∈ L∞(RN ).

By Lizorkin’s theorem, we conclude that ∆̂K0 is a Lp-multiplier for every p > 1. By the standard
Riesz operator theory, it follows that d̂2K0, d̂2Kj and d̂2Lj,k are Lp-multipliers for every p > 1.

Remark 5. By standard Riesz operator theory, the functions R̂j,k are also Lp-multipliers for
every p > 1.
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At this stage, by Proposition 1 and formulae (12) and (13), the functions F and G are in all
the spaces Lp(RN ) for every p ≥ 1. Therefore, by Proposition 1, Step 2 and equations (15) and
(16), the functions η and ∇(ψθ) are in Lp(RN ) for every p > 2N−1

2N−3 , while their second order
derivatives are in Lp(RN ) for every p > 1. Thus, it only remains to prove

Step 3. The functions ∇η and d2(ψθ) belong to Lp(RN ) for every p > 2N−1
2N−2 .

Indeed, consider p > 2N−1
2N−2 . There are some real numbers q > 2N−1

2N−3 and r > 1 such that

1
p

=
1
2

(
1
q

+
1
r

)
.

In particular, by Gagliardo-Nirenberg inequality, we derive

‖∇η‖Lp(RN ) ≤ A‖η‖
1
2

Lq(RN )
‖d2η‖

1
2

Lr(RN )
< +∞.

Thus, the function ∇η is in Lp(RN ) for every p > 2N−1
2N−2 . The proof being identical for the

function d2(ψθ), we omit it.

Now, we end the proof of Theorem 2.

Proof of Theorem 2. By Proposition 1, the function ∇v is C∞ on RN and is equal to

∇v =
(
− ∇η

2
√

1− η
+ i

√
1− η∇(ψθ)

)
ei(ψθ)

on a neighbourhood of infinity. However, by Lemma 1, the function 1 − η converges to 1 at
infinity, so by Proposition 4, there is some real numbers 1 < p0 < N − 1 < p1 < +∞ such that
∇v belongs to W 1,p0(RN ) and W 1,p1(RN ). Therefore, by Proposition 5, there is some constant
λ∞ ∈ C such that

v(x) →
|x|→+∞

λ∞.

Finally, by Lemma 1, the modulus of λ∞ is necessarily equal to one.

4 Conclusion

To our knowledge, the question of the non-existence of non-constant sonic travelling waves of
finite energy remains open in dimension N ≥ 3. However, we can expect to prove such a
conjecture by studying the asymptotic behaviour of the sonic travelling waves. Here, the key
idea is to prove integral equation (21) by some integrations by parts. Indeed, let BR be the ball
of centre 0 and of radius R > 0 and SR the related sphere. By multiplying equation (2) by the
function v and integrating by parts on BR, we find

∫

BR

(|∇v|2 + η2) =
∫

BR

(η +
√

2i∂1v.v) +
∫

SR

∂νv.v. (28)

However, the multiplication of (2) by the function iv gives

∂1η +
√

2div(i∇v.v) = 0,

so, by multiplying by the function x1 and integrating by parts on BR,
∫

BR

(η +
√

2i∂1v.v) =
∫

SR

x1(ν1η +
√

2i∂νv.v). (29)
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The sum of equations (28) and (29) is then
∫

BR

(|∇v|2 + η2) =
∫

SR

(∂νv.v + x1(ν1η +
√

2i∂νv.v)). (30)

The question is now to prove that the integral of the second member of equation (30) tends to 0
when R tends to +∞. One possible argument in this direction is to derive some algebraic decay
for the functions η and ∇(ψθ). Actually, it seems rather difficult because Lemma 10 of [10],
which gives a crucial decay estimate in the subsonic case, is not yet available for sonic travelling
waves.

A Travelling waves for the Gross-Pitaevskii equation in dimen-
sion one

In this appendix, we classify the travelling waves for the Gross-Pitaevskii equation of finite
energy and of speed c > 0 in dimension one (see also the article of M. Maris [16] for more
details).

Theorem 3. Assume N = 1 and c > 0. Let v a solution of finite energy of equation (2). Then,

• if c ≥ √
2, v is a constant of modulus one.

• if 0 < c <
√

2, up to a multiplication by a constant of modulus one and a translation, v is
either identically equal to 1, or to the function

v(x) =

√√√√√1− 2− c2

2ch2

(√
2−c2
2 x

)exp
(
i arctan

(
e
√

2−c2x + c2 − 1
c
√

2− c2

)
− i arctan

(
c√

2− c2

))
.

Proof. Indeed, let us denote v = v1 + iv2. Equation (2) then writes

v′′1 − cv′2 + v1(1− v2
1 − v2

2) = 0, (31)

v′′2 + cv′1 + v2(1− v2
1 − v2

2) = 0. (32)

The multiplication of equation (31) by v2 and of equation (32) by v1 gives

(v1v′2 − v2v
′
1)
′ =

c

2
η′. (33)

However, Proposition 1 also holds in the case N = 1. In particular, it follows that the functions
η and v′ uniformly converge to 0 at infinity. Thus, by integrating equation (33), we get

v1v
′
2 − v2v

′
1 =

c

2
η. (34)

Likewise, we multiply equation (31) by v′1 and equation (32) by v′2 to deduce

( |v′|2
2

)′
=

(
η2

4

)′
,

which yields

|v′|2 =
η2

2
. (35)
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Finally, we compute

η′′ = −2|v′|2 − 2(v1v′′1 + v2v
′′
2) = −2|v′|2 − 2c(v1v′2 − v2v

′
1) + 2η − 2η2.

Therefore, by equations (34) and (35),

η′′ + (c2 − 2)η + 3η2 = 0. (36)

Finally, we multiply equation (36) by the function η′ and integrate to obtain

η′2 + (c2 − 2)η2 + 2η3 = 0. (37)

Now, we consider different cases according to the value of c.
• If c >

√
2, then, by equation (37),

(c2 − 2 + 2η)η2 = −η′2 ≤ 0.

Therefore, for every x ∈ R, η(x) is either equal to 0, or less than 1− c2

2 . Since the function η is
continuous and in L2(R), we deduce that η is identically equal to 0. By equation (35), v′ also
vanishes, which means that v is a constant of modulus one.

• If c =
√

2, then, by equation (37),

η3 = −η
′2

2
≤ 0,

so, η is a non positive function on R. Now, assume for the sake of contradiction that there is
some real number x0 such that

η(x0) < 0.

Since η is smooth on R by Proposition 1, we deduce that there are some positive real number δ
and some integer ε ∈ {−1, 1} such that

∀x0 − δ ≤ x ≤ x0 + δ, η′(x) = ε
√
−2η3(x).

Denoting x1 = x0 − ε
√
− 2
η(x0) , it follows that

∀x0 − δ ≤ x ≤ x0 + δ, η(x) = − 2
(x− x1)2

.

In particular, such a solution cannot be extended to a function in L2(R), which yields a contra-
diction and proves that

η = 0.

As in the case c >
√

2, it follows that v is a constant of modulus one.

• Assume finally that 0 < c <
√

2 and η 6= 0 (indeed, if η = 0, it follows from equation (35)
that η is a constant of modulus one). By equation (37),

(c2 − 2 + 2η)η2 = −η′2 ≤ 0,

so,

η ≤ 1− c2

2
. (38)

Now, suppose for the sake of contradiction that there is some real number x0 such that

η(x0) < 0.
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Since η is smooth on R by Proposition 1, there are some positive real number δ and some integer
ε ∈ {−1, 1} such that

∀x0 − δ ≤ x ≤ x0 + δ, η′(x) = εη(x)
√

2− c2 − 2η(x).

Denoting x1 = x0 + 2ε√
2−c2 coth−1

(√
2−c2−2η(0)

2−c2

)
, it yields

∀x0 − δ ≤ x ≤ x0 + δ, η(x) = − 1− c2

2

sh2(
√

2−c2
2 (x− x1))

.

Since such a solution cannot be extended to a function in L2(R), it yields a contradiction and
proves that

η ≥ 0.

Moreover, by equation (38), since the constant function 1− c2

2 is not in L2(R) and since we made
the additional assumption that η 6= 0, we can assume up to a translation that

0 < η(0) < 1− c2

2
.

Therefore, there are some positive real number δ and some integer ε ∈ {−1, 1} such that

∀ − δ ≤ x ≤ δ, η′(x) = εη(x)
√

2− c2 − 2η(x),

which gives

∀ − δ ≤ x ≤ δ, η(x) =
1− c2

2

ch2(
√

2−c2
2 (x− x1))

where x1 = 2ε√
2−c2 ch−1

(√
2−c2
2η(0)

)
. Naturally, this solution can be extended to a smooth function

in L2(R). Therefore, up to another translation, we conclude that

∀x ∈ R, η(x) =
1− c2

2

ch2

(√
2−c2
2 x

) . (39)

In particular, we find
∀x ∈ R, |v(x)| =

√
1− η(x) ≥ c√

2
> 0.

Therefore, we can construct a smooth lifting θ of v which satisfies

∀x ∈ R, v(x) = ρ(x)eiθ(x).

By equation (34), the function θ verifies the differential equation

θ′ =
cη

2− 2η
.

Thus, there is some real number θ0 such that

∀x ∈ R, θ(x) = θ0 + arctan
(
e
√

2−c2x + c2 − 1
c
√

2− c2

)
.

By equation (39), up to a multiplication by a constant of modulus one, we finally obtain

v(x) =

√√√√√1− 2− c2

2ch2

(√
2−c2
2 x

)exp
(
i arctan

(
e
√

2−c2x + c2 − 1
c
√

2− c2

)
− i arctan

(
c√

2− c2

))
,

which concludes the proof of Theorem 3.
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Henri Poincaré, Physique Théorique, 70(2):147–238, 1999.
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