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Abstract

We study the decay of the travelling waves of finite energy in the Gross-Pitaevskii equation
in dimension greater than three and prove their uniform convergence to a constant of modulus
one at infinity.

Résumé

Nous étudions la limite à l’infini des ondes progressives d’énergie finie dans l’équation de
Gross-Pitaevskii en dimension supérieure ou égale à trois et nous montrons leur convergence
uniforme vers une constante de module un.

Version française abrégée

Dans cet article, nous étudions les ondes progressives u de vitesse c > 0 pour l’équation de
Gross-Pitaevskii i∂tu = ∆u + u(1 − |u|2) de la forme u(t, x) = v(x1 − ct, . . . , xN ). L’équation
vérifiée par v que nous étudierons désormais est

ic∂1v + ∆v + v(1− |v|2) = 0. (1)

L’équation de Gross-Pitaevskii est un modèle physique qui décrit la supraconductivité et la
superfluidité et qui est associé à l’énergie : E(v) = 1

2

∫
RN |∇v|2 + 1

4

∫
RN (1− |v|2)2.

C.A. Jones et P.H. Roberts [7] se sont intéressés aux ondes progressives d’énergie finie parce
qu’elles sont supposées expliquer la dynamique en temps long des solutions générales : ils ont
ainsi conjecturé qu’elles n’existent que lorsque 0 < c <

√
2, ce que nous supposerons désormais,

et qu’elles ont une limite à l’infini qui est une constante de module un.

F. Béthuel et J.C. Saut [3, 2] les ont étudiées sur le plan mathématique et ont notamment
montré leur existence en dimension deux lorsque c est petit, et l’existence de leur limite à l’infini.

Théorème 1. En dimension deux, une onde progressive pour l’équation de Gross-Pitaevskii de
vitesse 0 < c <

√
2 et d’énergie finie vérifie à une constante multiplicative de module un près

v(x) →
|x|→+∞

1.

En dimension trois, F. Béthuel, G. Orlandi et D. Smets [1] ont prouvé leur existence lorsque
c est petit, et, en toute dimension, A. Farina [5] a donné une borne universelle sur leur module.
Dans cet article, nous allons compléter leurs travaux en dimension supérieure ou égale à trois
par le théorème suivant.
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Théorème 2. En dimension supérieure ou égale à trois, une onde progressive pour l’équation
de Gross-Pitaevskii de vitesse 0 < c <

√
2 et d’énergie finie vérifie à une constante multiplicative

de module un près
v(x) →

|x|→+∞
1.

Dans la suite, nous esquisserons la preuve de ce théorème : nous déterminerons d’abord la
régularité des ondes progressives avant d’énoncer un argument général pour l’étude de la limite
à l’infini d’une fonction.

Introduction

In this article, we will focus on the travelling waves of speed c > 0 in the Gross-Pitaevskii
equation i∂tu = ∆u + u(1 − |u|2) which are of the form u(t, x) = v(x1 − ct, . . . , xN ). The
simplified equation for v, which we will study now, is

ic∂1v + ∆v + v(1− |v|2) = 0. (1)

The Gross-Pitaevskii equation is a physical model for superconductivity and superfluidity which
is associated to the energy: E(v) = 1

2

∫
RN |∇v|2 + 1

4

∫
RN (1− |v|2)2.

The travelling waves of finite energy are supposed to explain the long time dynamics of general
solutions and were first considered by C.A. Jones and P.H. Roberts [7]: they conjectured that
they only exist when c <

√
2, which will be supposed henceforth, and that they have a limit at

infinity which is a constant of modulus one.

F. Béthuel and J.C. Saut [3, 2] first studied mathematically these travelling waves: they
showed their existence in dimension two when c is small, and also gave a mathematical proof
for their decay at infinity. In fact, they proved the following theorem.

Theorem 1. In dimension two, a travelling wave for the Gross-Pitaevskii equation of finite
energy and speed 0 < c <

√
2 satisfies up to a multiplicative constant of modulus one

v(x) →
|x|→+∞

1.

In dimension three, F. Béthuel, G. Orlandi and D. Smets [1] showed their existence when c
is small, and in every dimension, A. Farina [5] proved a universal bound for their modulus. In
this paper, we will complete these results for the dimensions greater than three by proving the
following theorem.

Theorem 2. In dimension greater than three, a travelling wave for the Gross-Pitaevskii equation
of finite energy and speed 0 < c <

√
2 satisfies up to a multiplicative constant of modulus one

v(x) →
|x|→+∞

1.

This paper will be organized around the proof of this theorem: in a first part, we will study
the local and Sobolev regularity of the travelling waves and, in a second part, we will give a
general argument to study their decay at infinity.
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1 Regularity of travelling waves

In this part, we will study the regularity of a travelling wave of finite energy and of speed
0 < c <

√
2 in dimension N greater than two: we will proved the following proposition thanks

to arguments from F. Béthuel and J.C. Saut [3, 2].

Proposition 1. If v is a solution of the equation (1) in L1
loc(RN ) of finite energy, then v is

regular, bounded and its gradient belongs to all the spaces W k,p(RN ) for k ∈ N and p ∈]1,+∞].

Proof. We begin by establishing the following lemma which is valid even if c ≥
√

2.

Lemma 1. v is regular, bounded and its gradient belongs to all the spaces W k,p(RN ) for k ∈ N
and p ∈ [2,+∞].

The proof of this lemma is adapted from a bootstrap argument introduced in the article of F.
Béthuel and J.C. Saut [3], so, we will only give its sketch, and only in dimension three because
the general proof is identical with small changes of Sobolev indices.

We first consider a point z0 in R3 and we denote Ω, the unit ball with center z0. Then, we
consider the solutions v1 and v2 of the equations{

∆v1 = 0 on Ω
v1 = v on ∂Ω

and {
−∆v2 = g(v) := v(1− |v|2) + ic∂1v on Ω

v2 = 0 on ∂Ω.

Since the energy of v is finite, g(v) is uniformly bounded in L
4
3 (Ω), which means that ||g(v)||

L
4
3 (Ω)

is bounded by a constant which only depends on c and E(v) but not on z0. By standard elliptic
theory, and Sobolev embeddings, v1 and v2 are also uniformly bounded in L4(Ω) and W 2, 4

3 (Ω)
respectively.

If we denote ω, the ball with center z0 and with radius 1
2 , by Caccioppoli inequalities, v1

is uniformly bounded in W 2, 4
3 (ω) and in W 3, 12

11 (ω), so, v is uniformly bounded in W 2, 4
3 (ω).

Furthermore, we compute ∇g(v) = ∇v(1 − |v|2) − 2(v.∇v)v + ic∂1∇v, and then, ∇g(v) is
uniformly bounded in L

12
11 (ω). By standard elliptic theory, and Sobolev embeddings, we finally

get that v is uniformly bounded in C0, 1
12 (ω).

Thus, v is continuous and bounded on R3. Then, its gradient w = ∇v satisfies

−∆w − ic∂1w + (
c2

2
+ 2)w = w(1− |v|2)− 2(v.w)v + (

c2

2
+ 2)w = h(w),

so, from the preceding inequalities, h(w) belongs to L2(R3), which proves that w belongs to
H2(R3). So, w is continuous and bounded, and by iterating, we can conclude that v is regular,
bounded and that all its derivatives belong to the spaces L2(R3) and L∞(R3). Then, we end
this proof by using a standard interpolation result between Lp-spaces.

We deduce from this first lemma the following lemma.

Lemma 2. The modulus ρ of v satisfies

ρ(x) →
|x|→+∞

1.
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Indeed, if we denote η = 1 − ρ2, η2 is uniformly continuous because v is bounded and
lipschitzian by Lemma 1. As

∫
RN η

2 is finite, η converges uniformly to 0 at infinity which ends
the proof of this lemma.

Thus, ρ does not vanish at the neighborhood of infinity: so, we can write there v = ρeiθ and
compute the following equations satisfied by ρ and θ:{

div(ρ2∇θ) = − c
2∂1ρ

2

−∆ρ+ ρ|∇θ|2 + cρ∂1θ = ρ(1− ρ2).
(1)

Thanks to this polar form, we can now conclude the proof of Proposition 1 by the following
lemma.

Lemma 3. The gradient of v belongs to all the spaces W k,p(RN ) for k ∈ N and p ∈]1, 2[.

This proof is also adapted from an article of F. Béthuel and J.C. Saut [2], and so, we will
only give its sketch. We first notice by Lemma 2 that ρ does not vanish at the neighborhood
of infinity, and, in order to simplify, we will suppose that ρ does not vanish on RN : the general
situation is technically slightly more involved, but follows essentially the same idea (See [6]).

So, we begin by denoting F = 2η2 − 2cη∂1θ + 2|∇v|2 and G = η∇θ. Because |∇v|2 =
|∇ρ|2 + ρ2|∇θ|2, and by Lemma 1 and Lemma 2, we can establish that F and G are in all the
spaces W k,p(RN ) for k ∈ N and p ∈ [1,+∞]. Besides, we compute thanks to (1) using the
Fourier transformation

∀ξ ∈ RN ,


(|ξ|2 + 2)η̂(ξ)− 2icξ1θ̂(ξ) = F̂ (ξ)

|ξ|2θ̂(ξ) + ic
2 ξ1η̂(ξ) = −i

N∑
j=1

ξjĜj(ξ)

Denoting L0 and (Lj,1)1≤j≤N the operators associated to the Fourier multipliers K̂0(ξ) =
|ξ|2

|ξ|4+2|ξ|2−c2ξ21
, respectively R̂j,1(ξ) = ξjξ1

|ξ|2 , we can assert

η = L0(F + 2c
N∑
j=1

Lj,1(G)).

Furthermore, the Riesz operator theory checks that the operators (Lj,1)1≤j≤N are multipliers on
all the spaces Lp(RN ) for p ∈]1,+∞[, and, K̂0 is a regular bounded function on RN \ {0} which
satisfies

N∏
j=1

(ξkj

j )∂k11 . . . ∂kN
N K̂0(ξ) ∈ L∞(RN )

as soon as (k1, . . . , kN ) ∈ {0, 1}N satisfies 0 ≤
N∑
j=1

kj ≤ N . Therefore, by Lizorkin theorem [8]

(See also [9]), L0 is a multiplier on all the spaces Lp(RN ) for p ∈]1,+∞[ too. By the previous
statements on F and G, we conclude that η is in all the spaces Lp(RN ) for p ∈]1,+∞[, and by
the equation

∀j ∈ {1, . . . , N}, ∂jθ = − ic
2
Lj,1(η)− i

N∑
k=1

Lj,k(Gk)

where (Lj,k)1≤j,k≤N is the operator associated to the Fourier multiplier R̂j,k(ξ) = ξjξk
|ξ|2 , ∇θ is

also in all the spaces Lp(RN ) for p ∈]1,+∞[.

4



By iterating this process to all the derivatives of η and ∇θ by Lemma 1, we conclude that η
and ∇θ belong to all the spaces W k,p(RN ) for k ∈ N and p ∈]1,+∞[. Since η = 1− ρ2 and ρ is
in all the spaces W k,∞(RN ) for k ∈ N, and since |∇v|2 = |∇ρ|2 + ρ2|∇θ|2, Lemma 3 is proved
as well as Proposition 1.

2 Limit at infinity

Before concluding the proof of Theorem 2, we will establish the following general proposition
concerning the limit of a function at infinity.

Proposition 2. We consider a regular function v on RN : we suppose that N is greater than
three and that the gradient of v belongs to the spaces W 1,p0(RN ) and W 1,p1(RN ) where 1 < p0 <
N − 1 < p1 < +∞. Then there is a constant v∞ ∈ C which satisfies

v(x) →
|x|→+∞

v∞.

Proof. We begin by constructing the limit v∞. Indeed, we have∫
SN−1

∫ +∞

1
|∂rv(rξ)|drdσ ≤

∫
SN−1

(∫ +∞

1
|∇v(rξ)|p0rN−1dr

) 1
p0
(∫ +∞

1
r
− N−1

p0−1dr

) 1
p′0
dσ < +∞

which gives
∫ +∞

1 |∂rv(rξ)|dr < +∞ a.e. Thus, there is a function v∞ defined on SN−1 such that

v(rξ) →
r→+∞

v∞(ξ) a.e.

If we denote ∀p ∈ [p0, p1],∀r ∈ R∗+, φp(r) = rN−1
∫

SN−1 |∇v(rξ)|pdσ, this function is regular on
R∗+ and its derivative satisfies∫ +∞

0
|φ′p(r)|dr ≤ C(||∇v||p

Lp(RN )
+ ||∇v||p−1

Lp(RN )
||∇v||W 1,p(RN )) < +∞.

Hence, the function φp has a limit at infinity, and since
∫ +∞

0 φp(r)dr = ||∇v||p
Lp(RN )

< +∞, this

limit is zero. Furthermore, if we denote ∀(r, ξ) ∈ R∗+ × SN−1, vr(ξ) = v(rξ), we remark that
|∇v(rξ)|2 = |∂rv(rξ)|2 + r−2|∇SN−1vr(ξ)|2, which leads finally to

rN−1−p
∫

SN−1

|∇SN−1vr(ξ)|pdσ →
r→+∞

0.

Thus, if N − 1 ≤ q < min{p1, N}, we get for every r ∈ R∗+∫
SN−1

|vr − v∞|qdσ ≤
∫

SN−1

(∫ +∞

r
|∂rv(sξ)|ds

)q
dσ ≤

∫
SN−1

rq−n
∫ +∞

r
|∇v(sξ)|qsN−1dsdσ

≤ Cn,q||∇v||qLq(RN )
rq−N ,

which gives

||vr − v∞||LN−1,1(SN−1) = CN

∫ |SN−1|

0
t−

N−2
N−1 |vr − v∞|∗(t)dt ≤ CN,q

(∫ |SN−1|

0
|vr − v∞|∗q(t)dt

) 1
q

≤ CN,q||vr − v∞||Lq(SN−1)

≤ CN,q||∇v||qLq(RN )
rq−N
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and proves that ||vr − v∞||LN−1,1(SN−1) tends to 0 when r tends to +∞. Now, we fix ε > 0 and
we denote

∀r ∈ R+,

{
∀λ ∈ R∗+, ar(λ) = |{ξ ∈ SN−1/|∇SN−1vr(ξ)| > λ}|

∀t ∈ R∗+, fr(t) = |∇SN−1vr|∗(t) = inf{λ ∈ R∗+/ar(λ) ≤ t}.

We have showed that there exists rε ∈ R∗+ such that

∀r > rε, ∀i ∈ {0, 1}, rN−1−pi

∫
SN−1

|∇SN−1vr(ξ)|pidσ ≤ εpi .

This gives {
∀λ ∈ R∗+, ar(λ) ≤ min{ εp0

rN−1−p0λp0
, εp1

rN−1−p1λp1
}

∀t ∈ R∗+, fr(t) ≤ min{ ε

r
N−1
p0
−1
t

1
p0

, ε

r
N−1
p1
−1
t

1
p1

}.

Thus, we finally get

||∇vr||LN−1,1(SN−1) ≤ CN ε

(
r

1−N−1
p1

∫ r1−N

0
t
−N−2

N−1
− 1

p1 dt+ r
1−N−1

p0

∫ |SN−1|

r1−N

t
−N−2

N−1
− 1

p0 dt

)
≤ CN,p0,p1ε.

This proves that ∇vr converges to 0 in LN−1,1(SN−1) when r tends to +∞. Since (vr)r>0

converges to v∞ in LN−1,1(SN−1) and the limit of its gradient is 0 in this same space, we
conclude that the gradient of v∞ is 0 and so, v∞ is constant. Besides, by a theorem of A.
Cianchi and L. Pick [4], we know that there is a constant C which satisfies for all r > 0

||vr − v∞||L∞(SN−1) ≤ C(||vr − v∞||LN−1,1(SN−1) + ||∇(vr − v∞)||LN−1,1(SN−1)) →
r→+∞

0

which ends the proof of this proposition.

Now, we conclude the proof of Theorem 2: if v is a travelling wave of finite energy and of
speed c <

√
2, it satisfies the hypothesis of Proposition 2 by Proposition 1. So there is a constant

v∞ ∈ C such that
v(x) →

|x|→+∞
v∞.

It remains to show that v∞ has a modulus equal to one which is clear in view of Lemma 2.
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