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Abstract

We study the decay of the travelling waves of finite energy in the Gross-Pitaevskii equation
in dimension greater than three and prove their uniform convergence to a constant of modulus
one at infinity.

Résumé

Nous étudions la limite a l'infini des ondes progressives d’énergie finie dans 1’équation de
Gross-Pitaevskii en dimension supérieure ou égale a trois et nous montrons leur convergence
uniforme vers une constante de module un.

Version francaise abrégée

Dans cet article, nous étudions les ondes progressives u de vitesse ¢ > 0 pour I’équation de
Gross-Pitaevskii i0yu = Au + u(1l — |u|?) de la forme u(t,z) = v(zy — ct,...,xn). L’équation
vérifiée par v que nous étudierons désormais est

icopw + Av + (1 — |[v]?) = 0. (1)

L’équation de Gross-Pitaevskii est un modele physique qui décrit la supraconductivité et la
superfluidité et qui est associé & I'énergie : E(v) = 1 [on [Vo[2+ 1 [on (1 —[v[})2

C.A. Jones et P.H. Roberts [7] se sont intéressés aux ondes progressives d’énergie finie parce
qu’elles sont supposées expliquer la dynamique en temps long des solutions générales : ils ont
ainsi conjecturé qu’elles n’existent que lorsque 0 < ¢ < v/2, ce que nous supposerons désormais,
et qu’elles ont une limite a l'infini qui est une constante de module un.

F. Béthuel et J.C. Saut [3, 2] les ont étudiées sur le plan mathématique et ont notamment
montré leur existence en dimension deux lorsque c est petit, et I’existence de leur limite a I'infini.

Théoréeme 1. En dimension deuzx, une onde progressive pour l’équation de Gross-Pitaevskii de
vitesse 0 < ¢ < \/2 et d’énergie finie vérifie d une constante multiplicative de module un preés

v(iz) — L
|z| =400

En dimension trois, F. Béthuel, G. Orlandi et D. Smets [1] ont prouvé leur existence lorsque
c est petit, et, en toute dimension, A. Farina [5] a donné une borne universelle sur leur module.
Dans cet article, nous allons compléter leurs travaux en dimension supérieure ou égale a trois
par le théoreme suivant.
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Théoréme 2. En dimension supérieure ou €gale a trois, une onde progressive pour l’équation
de Gross-Pitaevskii de vitesse 0 < ¢ < \/2 et d’énergie finie vérifie & une constante multiplicative
de module un prés

v(iz) — L
|z[—+00

Dans la suite, nous esquisserons la preuve de ce théoreme : nous déterminerons d’abord la
régularité des ondes progressives avant d’énoncer un argument général pour 1’étude de la limite
a I'infini d’une fonction.

Introduction

In this article, we will focus on the travelling waves of speed ¢ > 0 in the Gross-Pitaevskii
equation i0yu = Au + u(l — |u|?) which are of the form w(t,z) = v(x; — ct,...,xn). The
simplified equation for v, which we will study now, is

icopw + Av + (1 — |v]?) = 0. (1)

The Gross-Pitaevskii equation is a physical model for superconductivity and superfluidity which
is associated to the energy: E(v) =1 [on [VV? + 3 [pn (1 — |v]?)2

The travelling waves of finite energy are supposed to explain the long time dynamics of general
solutions and were first considered by C.A. Jones and P.H. Roberts [7]: they conjectured that
they only exist when ¢ < v/2, which will be supposed henceforth, and that they have a limit at
infinity which is a constant of modulus one.

F. Béthuel and J.C. Saut [3, 2] first studied mathematically these travelling waves: they
showed their existence in dimension two when ¢ is small, and also gave a mathematical proof
for their decay at infinity. In fact, they proved the following theorem.

Theorem 1. In dimension two, a travelling wave for the Gross-Pitaevskii equation of finite
energy and speed 0 < ¢ < \/2 satisfies up to a multiplicative constant of modulus one

v(iz) — L
|| —+o0

In dimension three, F. Béthuel, G. Orlandi and D. Smets [1] showed their existence when ¢
is small, and in every dimension, A. Farina [5] proved a universal bound for their modulus. In
this paper, we will complete these results for the dimensions greater than three by proving the
following theorem.

Theorem 2. In dimension greater than three, a travelling wave for the Gross-Pitaevskii equation
of finite energy and speed 0 < ¢ < \/2 satisfies up to a multiplicative constant of modulus one

v(iz) — L
|| —+o0

This paper will be organized around the proof of this theorem: in a first part, we will study
the local and Sobolev regularity of the travelling waves and, in a second part, we will give a
general argument to study their decay at infinity.



1 Regularity of travelling waves

In this part, we will study the regularity of a travelling wave of finite energy and of speed
0 < ¢ < V2 in dimension N greater than two: we will proved the following proposition thanks
to arguments from F. Béthuel and J.C. Saut [3, 2].

Proposition 1. If v is a solution of the equation (1) in L} (RN) of finite energy, then v is

regular, bounded and its gradient belongs to all the spaces W*P(RN) for k € N and p €]1, +o0].

Proof. We begin by establishing the following lemma which is valid even if ¢ > /2.

Lemma 1. v is regular, bounded and its gradient belongs to all the spaces W*P(RYN) for k € N
and p € [2,+00].

The proof of this lemma is adapted from a bootstrap argument introduced in the article of F.
Béthuel and J.C. Saut [3], so, we will only give its sketch, and only in dimension three because
the general proof is identical with small changes of Sobolev indices.

We first consider a point zp in R? and we denote €2, the unit ball with center zy. Then, we
consider the solutions v; and vy of the equations

Avi =0o0n Q
v1 = v on 0N

and
—Avg = g(v) :=v(1 — |v|?) + icd1v on
vg = 0 on 0f2.
Since the energy of v is finite, g(v) is uniformly bounded in Ls (), which means that ||g(v)] \L% @
is bounded by a constant which only depends on ¢ and E(v) but not on zy. By standard elliptic
theory, and Sobolev embeddings, v; and vy are also uniformly bounded in L*(Q2) and WZ%(Q)
respectively.

If we denote w, the ball with center zy and with radius %, by Caccioppoli inequalities, vy
is uniformly bounded in Wz’%(w) and in Wg’%(w), so, v is uniformly bounded in W2’%(w).
Furthermore, we compute Vg(v) = Vo(l — |[v|?) — 2(v.Vv)v + icd; Vv, and then, Vg(v) is
uniformly bounded in L%(w). By standard elliptic theory, and Sobolev embeddings, we finally
get that v is uniformly bounded in CO’%(w).

Thus, v is continuous and bounded on R3. Then, its gradient w = Vv satisfies
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—Aw —icdhw + (5 +2)w = w(l - o) = 2(v.w)u + (% +2)w = h(w),

so, from the preceding inequalities, h(w) belongs to L2(R3), which proves that w belongs to
H?(R3). So, w is continuous and bounded, and by iterating, we can conclude that v is regular,
bounded and that all its derivatives belong to the spaces L?(R3) and L>°(R3). Then, we end
this proof by using a standard interpolation result between LP-spaces.

We deduce from this first lemma the following lemma.

Lemma 2. The modulus p of v satisfies

() — L
|z|—=+00



Indeed, if we denote n = 1 — p?, n? is uniformly continuous because v is bounded and
lipschitzian by Lemma 1. As fRN n? is finite, n converges uniformly to 0 at infinity which ends
the proof of this lemma.

Thus, p does not vanish at the neighborhood of infinity: so, we can write there v = pe?® and
compute the following equations satisfied by p and 6:

div(p*Vh) = — £y p? (1)
—Ap+ p|VO]> + cpdrf = p(1 — p?).

Thanks to this polar form, we can now conclude the proof of Proposition 1 by the following
lemma.

Lemma 3. The gradient of v belongs to all the spaces W*P(RN) for k € N and p €]1,2[.

This proof is also adapted from an article of F. Béthuel and J.C. Saut [2], and so, we will
only give its sketch. We first notice by Lemma 2 that p does not vanish at the neighborhood
of infinity, and, in order to simplify, we will suppose that p does not vanish on R": the general
situation is technically slightly more involved, but follows essentially the same idea (See [6]).

So, we begin by denoting F' = 2n? — 2cnd10 + 2|Vo|? and G = nVl. Because |Vv|? =
|Vp|? + p?|VO|?, and by Lemma 1 and Lemma 2, we can establish that F' and G are in all the
spaces WHFP(RN) for k € N and p € [1,+oc]. Besides, we compute thanks to (1) using the
Fourier transformation

~ ~

(117 +2)7(8) — 2ic&16(¢) = F(€)

N —~ . N
TCERTA epae) + ame) = ~i6G5(6)
P

Denoting Lo and (L;1)1<j<n the operators associated to the Fourier multipliers I/(\o(ﬁ) =

l€[?

_ e : R (e) = && o
T2 E=E respectively R; (&) = £z We can assert

N

n=Lo(F+2cY L;j1(G)).
Jj=1

Furthermore, the Riesz operator theory checks that the operators (L;1)1<j<n are multipliers on

all the spaces LP(RY) for p €]1, +o0|, and, K is a regular bounded function on RY \ {0} which

satisfies
N

[Tt .. o5 Kole) € L=®RY)

j=1

N
as soon as (ki,...,ky) € {0,1}" satisfies 0 < Y k; < N. Therefore, by Lizorkin theorem [8]
j=1

(See also [9]), Lo is a multiplier on all the spaces LP(R™) for p €]1, +oo[ too. By the previous
statements on I and G, we conclude that 7 is in all the spaces LP(R") for p €]1,4o0[, and by
the equation
ic al
i€ {1l N} 00 =~ Lia(n) — i)y Lix(Gr)
k=1

where (L;1)i1<jk<n is the operator associated to the Fourier multiplier Ej\k(ﬁ) = %, Vo is

also in all the spaces LP(R™) for p €]1, +ool.



By iterating this process to all the derivatives of n and V@ by Lemma 1, we conclude that n

and V@ belong to all the spaces W*P(RY) for k € N and p €]1, [ Since n = 1 — p? and p is
in all the spaces W*>(RV) for k € N, and since |Vv|? = |Vp|2 + p%| V0|2, Lemma 3 is proved
as well as Proposition 1. O

2 Limit at infinity
Before concluding the proof of Theorem 2, we will establish the following general proposition
concerning the limit of a function at infinity.

Proposition 2. We consider a reqular function v on RN : we suppose that N is greater than
three and that the gradient of v belongs to the spaces WP (RN) and WHPH(RN) where 1 < py <
N —1 < p1 < +oo. Then there is a constant v, € C which satisfies

v(T) = Vs
|z =00

Proof. We begin by constructing the limit vo,. Indeed, we have

+o0 +oo % too N1 i
/ / |Opv(re)|drdo < / (/ \Vv(rﬁ)poerdr> </ r Po—ldr> do < +o00
SN-1.J1 N-1 \J1 1

which gives f1+°o |0,v(r€)|dr < 400 a.e. Thus, there is a function v., defined on SV~ such that

v(ré) T Voo (§) a.e.

If we denote Vp € [po,p1], Vr € RY, ¢p(r) = V-1 fSN71 |Vu(ré)|Pdo, this function is regular on
R% and its derivative satisfies

“+oo
/O [64,()ldr < CUIVOIG gy + V01t [ Vol litageay) < +00.

Hence, the function ¢, has a limit at infinity, and since [, ¢, (r)dr = || Vo[ Lo(ry) < +00, this

limit is zero. Furthermore, if we denote V(r,&) € R x SN71 v,(¢) = v(r€), we remark that
(Vu(ré)|? = |00 (ré) |2 +r 2|VSN 10,(€)]2, which leads finally to

r—-+o00

PN / Vevorvn(6)Pde — 0.
SN—-1

Thus, if N —1 < ¢ < min{p;, N}, we get for every r € R

+o00 q +o0
/ |vr — voo|¥do < / </ |8rv(3§)\ds> do < / an/ |Vo(s€)|?sN Ldsdo
gN-1 sN-1 \J, gN-1 r

< Cngl|V0l| T gy 7,
which gives

1
|SN71| ‘SN71| q

_ N-2
t N1 o, — Voo (t)dt < Cn g (/
0

< Cngllvr — Q100||L(1(SN*1)

< CN,C]HV’UH%q(RN)rq_N

HUT — UOOHLNfl,l(SNfl) = CN/ ’UT — Uw‘*q(t)dt>
0



and proves that |[v, — veo|[LNv-11(gn-1) tends to 0 when 7 tends to +oo. Now, we fix € > 0 and
we denote

Vr e R VA e RY, ar(N) = {€ € SVT1/|[Vgn1v,(6)] > A
T V€ RE, fo(t) = | Vg [*(t) = inf{\ € R% /a,(\) < t}.

We have showed that there exists r. € R such that

Vr > re, Vi € {0, 1},7“N_1_pi/ |Vsn—1v,(€)|Pido < €.
1

This gives

1-pg\ro ? o N—1—p1 )\P1

vt € RY, fr(t) < min{———r, = }.

{ YA € RY, a,(A) < min{ 2 I

r PO tP0 p P1 tP1
Thus, we finally get

Pl-N

r —N ‘SN71|
1_N-1 N-2 1 1_N-1 _N-2 1
HVUT||LN71,1(SN71) <Cnelr n t N1 ondt4+r po t N-1 rodt
0
< CN7P07P16'

This proves that Vo, converges to 0 in LY~"11(SN=1) when r tends to +o0o. Since (v,)r=o
converges to Vs in LY H(SN1) and the limit of its gradient is 0 in this same space, we
conclude that the gradient of vy, is 0 and so, v, is constant. Besides, by a theorem of A.
Cianchi and L. Pick [4], we know that there is a constant C' which satisfies for all r > 0

|Jor — UOOHLOO(SN*I) < C([lvr = UOOHLN*M(SN*) + [V (v, — UOO)HLN*U(SN*)) T_>_>+OO 0

which ends the proof of this proposition. O

Now, we conclude the proof of Theorem 2: if v is a travelling wave of finite energy and of
speed ¢ < v/2, it satisfies the hypothesis of Proposition 2 by Proposition 1. So there is a constant
VUso € C such that

v(z) — Vs
|| =00

It remains to show that v, has a modulus equal to one which is clear in view of Lemma 2.
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