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Abstract

In a previous paper [7], we investigated the asymptotic behaviour of subsonic travelling
waves of finite energy for the Gross-Pitaevskii equation in every dimension N ≥ 2. In
particular, we gave their first order asymptotics in case they were axisymmetric. In the
present paper, we compute their first order asymptotics at infinity in the general case.

Introduction

1 Motivation and main result

The Gross-Pitaevskii equation is a relevant model in several domains of physics (Bose-Einstein
condensation, superconductivity, superfluidity, nonlinear optics...). This nonlinear Schrödinger
equation writes

i∂tu = ∆u+ u(1− |u|2), (1)

for a function u defined from R × RN (with N ≥ 2) to C. It conserves (at least formally) two
integral quantities which play a role in the asymptotic description of subsonic travelling waves
of finite energy: the so-called Ginzburg-Landau energy

E(u) =
1
2

∫

RN

|∇u|2 +
1
4

∫

RN

(1− |u|2)2, (2)

and the momentum
~P (u) =

1
2

∫

RN

i∇u.(u− 1). (3)

A travelling wave v for the Gross-Pitaevskii equation is a particular solution of equation (1) of
the form

u(t, x) = v(x1 − ct, x2, . . . , xN ).

The parameter c ≥ 0 is the speed of the travelling wave v, which moves in direction x1. The
equation for the profile v, which we will consider from now on, writes

ic∂1v + ∆v + v(1− |v|2) = 0. (4)

The travelling waves of finite energy are supposed to play a major role in the long time dynamics
of the Gross-Pitaevskii equation. C.A. Jones, S.J. Putterman and P.H. Roberts [10, 9] conse-
quently considered their existence and qualitative properties by means of numerical simulations
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and formal computations. They conjectured that there exist non-constant travelling waves of
finite energy if and only if their speed c satisfies

0 < c < cs =
√

2, (5)

which means that all non-constant travelling waves of finite energy are subsonic. Indeed, the
characteristic speed cs =

√
2 is the speed of sound waves for equation (1) near the constant

solution u = 1. To our knowledge, their conjecture remains an open problem 1. However, many
recent papers [1, 3, 2, 4, 5, 6] partly confirm its validity. That is the reason why we will only
consider subsonic travelling waves of finite energy for which inequality (5) is valid.

Under this assumption, C.A. Jones, S.J. Putterman and P.H. Roberts [10, 9] described the
asymptotic behaviour of travelling waves of finite energy which are axisymmetric around axis
x1. They computed their first order asymptotics (up to a multiplicative constant of modulus
one) in dimension two,

v(x)− 1 ∼
|x|→+∞

iαx1

x2
1 + (1− c2

2 )x2
2

, (6)

and in dimension three,

v(x)− 1 ∼
|x|→+∞

iαx1

(x2
1 + (1− c2

2 )(x2
2 + x2

3))
3
2

. (7)

Here, the constant α is the stretched dipole coefficient linked to the energy E(v) and to the
scalar momentum p(v) = P1(v) in direction x1, by the formulae

2πα

√
1− c2

2
= cE(v) + 2

(
1− c2

4

)
p(v) (8)

in dimension two, and
4πα =

c

2
E(v) + 2p(v) (9)

in dimension three. In a previous paper [7], we derived rigorously formulae (6), (7), (8) and
(9). More precisely, we established the existence of first order asymptotics for any subsonic
travelling wave of finite energy, before computing explicitly formulae (6), (7), (8) and (9) in the
axisymmetric case.

Theorem 1 ([7]). Let N ≥ 2 and 0 < c <
√

2. Consider a travelling wave v of finite energy
and of speed c for the Gross-Pitaevskii equation. There exist a complex number λ∞ of modulus
one and a smooth function v∞ defined from the sphere SN−1 to R such that

|x|N−1
(
v(x)− λ∞

)− iλ∞v∞

(
x

|x|
)

→
|x|→+∞

0 uniformly. (10)

Assume moreover that the function v is axisymmetric around axis x1, i.e. it only depends on

the variables x1 and |x⊥| =
√

N∑
i=2
x2

i . The function v∞ then writes

∀σ = (σ1, . . . , σN ) ∈ SN−1, v∞(σ) = α
σ1(

1− c2

2 + c2σ2
1

2

)N
2

, (11)

where the constant α is equal to

α =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

(
4−N

2
cE(v) +

(
2 +

N − 3
2

c2
)
p(v)

)
. (12)

1The non-existence of non-constant travelling waves of finite energy for c =
√

2 in every dimension N ≥ 3, and
their existence for every speed 0 < c <

√
2 in every dimension N ≥ 2 are not yet established.
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Remark. We also computed explicitly the function v∞ for every subsonic travelling wave v
in dimension two. In this case, there exist some constants α and β such that the function v∞
writes

∀σ = (σ1, σ2) ∈ S1, v∞(σ) = α
σ1

1− c2

2 + c2σ2
1

2

+ β
σ2

1− c2

2 + c2σ2
1

2

. (13)

Moreover, the constants α and β are linked to the energy E(v) and the momentum ~P (v) by the
formulae

α =
1

2π
√

1− c2

2

(
cE(v) +

(
2− c2

2

)
p(v)

)
, (14)

β =
1
π

√
1− c2

2
P2(v). (15)

However, we were not able to compute explicitly the value of the function v∞ in the general
case. We only conjectured its value in Conjecture 1 of [7]. The goal of the present paper is to
fill this gap by confirming the validity of this conjecture.

Theorem 2. Let N ≥ 2 and 0 < c <
√

2. Consider a travelling wave v of finite energy and of
speed c for the Gross-Pitaevskii equation. There exist some constants α, β2, . . ., βN such that
the function v∞ defined by statement (10) of Theorem 1 is equal to

∀σ ∈ SN−1, v∞(σ) = α
σ1(

1− c2

2 + c2σ2
1

2

)N
2

+
N∑

j=2

βj
σj(

1− c2

2 + c2σ2
1

2

)N
2

. (16)

Moreover, the constants α and βj are equal to

α =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

(
4−N

2
cE(v) +

(
2 +

N − 3
2

c2
)
p(v)

)
, (17)

βj =
Γ(N

2 )

π
N
2

(
1− c2

2

)N−1
2

Pj(v). (18)

Remarks. 1. Formulae (16), (17) and (18) are identically equal to formulae (13), (14) and
(15) in dimension two.

2. Theorem 2 is also consistent with formulae (11) and (12) in the axisymmetric case. Indeed,
a travelling wave v, which is axisymmetric around axis x1, is an even function of each variable
xj for j ∈ {2, . . . , N}. Therefore, the functions v − 1 and ∂jv are respectively even and odd
functions of each variable xj . By definition (3), the scalar momentum Pj(v) in direction xj , and
consequently the constant βj , vanish for every j ∈ {2, . . . , N}. As a consequence, formulae (16),
(17) and (18) are identically equal to formulae (11) and (12) in the axisymmetric case.

3. The first order term v∞ of the asymptotics of v is completely determined by some integral
quantities α, β2, . . ., βN , linked to the energy E(v) and the momentum ~P (v) by formulae (17) and
(18). As mentioned in [7], this raises an interesting question. Consider N real numbers a1, . . .,
aN : is it possible to construct a travelling wave v such that the values of the integral quantities
α, β2, . . ., βN are exactly equal to a1, . . ., aN ? In other words, is it possible to construct
travelling waves v whose asymptotics correspond to any possible one given by Theorem 2, or are
there other restrictions for admissible asymptotics ? To our knowledge, these questions remain
open problems. Indeed, the existence results of F. Béthuel and J.C. Saut [3, 2], F. Béthuel, G.
Orlandi and D. Smets [1] and D. Chiron [4] assert the existence of presumably axisymmetric
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travelling waves, for which the constants β2, . . ., βN are equal to 0. Therefore, we do not know
of any travelling wave for which the values of β2, . . ., βN are not 0. Thus, a first step to answer
to the questions above seems to be the proof of the existence of travelling waves which are not
axisymmetric.

The present paper focuses on the proof of Theorem 2. However, this requires many arguments
from the proof of Theorem 1, which forms the core of an earlier paper [7]. Therefore, we first
recall some notations and results of [7] before establishing Theorem 2.

2 Preliminaries

In [7], Theorem 1 results from a new formulation of equation (4), which relies on a polar form
of the function v. Indeed, there is some positive real number R0 and some functions ρ := |v|
and θ in C∞(B(0, R0)c,R) such that

v = ρeiθ

on B(0, R0)c. By introducing a cut-off function ψ ∈ C∞(RN , [0, 1]) such that
{

ψ = 0 on B(0, 2R0),
ψ = 1 on B(0, 3R0)c,

we compute new equations for the new variables η := 1− ρ2 and ψθ,

∆2η − 2∆η + c2∂2
1,1η =−∆F − 2c∂1div(G), (19)

∆(ψθ) =
c

2
∂1η + div(G), (20)

where

F =2|∇v|2 + 2η2 − 2ci∂1v.v − 2c∂1(ψθ),
G =i∇v.v +∇(ψθ).

We then derive our new formulation by transforming equations (19) and (20) in the convolution
equations

η =K0 ∗ F + 2c
N∑

k=1

Kk ∗Gk, (21)

∀j ∈ {1, . . . , N}, ∂j(ψθ) =
c

2
Kj ∗ F + c2

N∑

k=1

Lj,k ∗Gk +
N∑

k=1

Rj,k ∗Gk, (22)

where K0, Kj , Lj,k and Rj,k are the kernels of Fourier transform

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
, (23)

∀j ∈ {1, . . . , N}, K̂j(ξ) =
ξ1ξj

|ξ|4 + 2|ξ|2 − c2ξ21
, (24)

∀(j, k) ∈ {1, . . . , N}2, L̂j,k(ξ) =
ξ21ξjξk

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ21)
, (25)

∀(j, k) ∈ {1, . . . , N}2, R̂j,k(ξ) =
ξjξk
|ξ|2 . (26)
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Theorem 1 then results from equations (21) and (22). Indeed, the asymptotics of K0, Kj , Lj,k

and Rj,k give the asymptotics of η and ψθ (which yield the asymptotics of v). More precisely,
Proposition 5 of [7] asserts that there exist some functions η∞ ∈ C1(SN−1) and (θ∞, v∞) ∈
C2(SN−1)2 such that

RNη(Rσ) →
R→+∞

η∞(σ) in C1(SN−1),

RN−1(ψθ)(Rσ) →
R→+∞

θ∞(σ) in C2(SN−1),

RN−1
(
v(Rσ)− 1

) →
R→+∞

iv∞(σ) in C1(SN−1).

Moreover, equations (70) and (72) of [7] give expressions of η∞, θ∞ and v∞ for every σ ∈ SN−1,

η∞(σ) =K0,∞(σ)
∫

RN

F (x)dx+ 2c
N∑

j=1

Kj,∞(σ)
∫

RN

Gj(x)dx, (27)

θ∞(σ) = v∞(σ) =
c

2(N − 1)

( N∑

j=1

σjKj,∞(σ)
) ∫

RN

F (x)dx+
N∑

k=1

(
Γ(N

2 )

2π
N
2

σk

− c2

N − 1

N∑

j=1

σjLj,k,∞(σ)
)∫

RN

Gk(x)dx. (28)

Here, K0,∞, Kj,∞ and Lj,k,∞ are bounded functions on SN−1, which give the asymptotics of K0,
Kj and Lj,k as claimed above. More precisely, they are defined by the following theorem.

Theorem 3 ([7]). Consider the space of functions

K̂(RN ) := {u ∈ C∞(RN \ {0},C), ∀i ∈ N, diu ∈M∞
i (RN ) ∪M∞

i+2(RN )},
where M∞

α (RN ) := {u : RN 7→ C, ‖u‖M∞
α (RN ) = sup{|x|α|u(x)|, x ∈ RN} < +∞} for every

α > 0. Assume that K is a tempered distribution whose Fourier transform

K̂ =
P

Q

is a rational fraction which belongs to K̂(RN ) and such that

∀ξ ∈ RN \ {0}, Q(ξ) 6= 0.

Then, there exists a measurable function K∞ ∈ L∞(SN−1,C) such that

∀σ ∈ SN−1, RNK(Rσ) →
R→+∞

K∞(σ). (29)

As mentioned in the proof of Corollary 3 of [7], the kernels K0, Kj and Lj,k satisfy all the
assumptions of Theorem 3. The functions K0,∞, Kj,∞ and Lj,k,∞ are equal to the function K∞
defined by assertion (29) for each kernel K0, Kj or Lj,k.

Actually, the proof of Theorem 3 yields integral expressions of K∞, and consequently, of
K0,∞, Kj,∞ and Lj,k,∞. Indeed, consider some distribution K which verifies all the assumptions
of Theorem 3. The function K̂ as well as all its derivatives are rational fractions only singular
at the origin. Therefore, they write for every j ∈ {1, . . . , N} and p ∈ N,

∂p
j K̂ =

Pp

Qp
=

dp∑
k=0

Pk,p

d′p∑
k=0

Qk,p

, (30)
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where Pk,p and Qk,p are homogeneous polynomial functions either equal to 0 or of degree k, and
the polynomial functions Pp and Qp are inductively defined by

P0 = P and Pp+1 = ∂jPpQp − Pp∂jQp, (31)

Q0 = Q and Qp+1 = Q2
p. (32)

Now, denote for every i ∈ {0, 1, 2}, and ξ ∈ RN \ {0},

li(ξ) =
{

min{k ∈ {0, . . . , dp}, Pk,N+i−1(ξ) 6= 0}, if ∃k ∈ {0, . . . , dp}, Pk,N+i−1(ξ) 6= 0,
+∞, otherwise,

l′i(ξ) =min{k ∈ {0, . . . , d′p}, Qk,N+i−1(ξ) 6= 0}.

Since Q does not vanish on RN \ {0}, the polynomial function Qp does not vanish on RN \ {0},
so, the functions li and l′i are well-defined on RN \ {0}. Moreover, Claim 1 of [7] states that for
every i ∈ {0, 1, 2},

∀ξ ∈ RN \ {0},
∂N+i−1

j K̂
(

ξ
R

)

RN+i−1
→

R→+∞
Ri(ξ), (33)

where the function Ri writes

∀ξ ∈ RN \ {0}, Ri(ξ) =

{
δl′i(ξ),li(ξ)+N−1+i

Pli(ξ),N+i−1(ξ)

Ql′
i
(ξ),N+i−1(ξ) , if li(ξ) 6= +∞,

0, otherwise.
(34)

The function K∞ now writes as a function of R0, R1 and R2. Indeed, formula (61) of [7] asserts
that for every σ ∈ SN−1 such that σj 6= 0,

K∞(σ) =
iN

(2πσj)N

(∫

B(0,1)
R1(ξ)(eiξ.σ − 1)dξ +

∫

SN−1

ξjR0(ξ)dξ

− 1
iσj

(∫

B(0,1)c

R2(ξ)eiξ.σdξ +
∫

SN−1

ξjR1(ξ)eiξ.σdξ

))
.

(35)

Thus, formula (35) yields some integral expressions of K∞, which only depend on the value of
K̂ (through R0, R1 and R2). However, formulae (23), (24) and (25) give the explicit values of
K̂0, K̂j and L̂j,k, so, it seems possible to compute explicitly K0,∞, Kj,∞ and Lj,k,∞ by formula
(35). This computation is the key ingredient of the proof of Theorem 2 as mentioned below.

3 Sketch of the proof of Theorem 2

Theorem 2 specifies the asymptotics of v by giving the value of v∞. In [7], we already computed
this value in dimension two and in the axisymmetric case (Cf Theorem 1). In both cases, we
derived a linear partial differential equation for v∞ on SN−1, and solved it to get the value of v∞.
However, we were only able to solve such an equation when it reduces to an ordinary differential
equation, i.e. in dimension two and in the axisymmetric case. Moreover, such a resolution
presents a major drawback: the considered equation may have some ”parasite” solutions which
do not correspond to the asymptotics of any travelling wave. Consequently, Theorem 2 relies
on a completely different argument: the direct computation of v∞ by formula (28). Indeed,
equations (27) and (28) reduce the computation of η∞, θ∞ and v∞ to the computation of K0,∞,
Kj,∞ and Lj,k,∞ on one hand, and of

∫
RN F (x)dx and

∫
RN Gk(x)dx on the other hand. However,
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we already computed these integrals in [7] (see the remark of Subsection 3.3). They are equal
to

∫

RN

F (x)dx =2
(
(4−N)E(v) + c(N − 3)p(v)

)
, (36)

∫

RN

Gk(x)dx =2Pk(v). (37)

Therefore, it only remains to computeK0,∞, Kj,∞ and Lj,k,∞ by using formula (35) as mentioned
above. However, this computation may be quite involved because of the anisotropy ofK0, Kj and
Lj,k, so, we do not proceed by a direct computation. Instead, we compute formula (35) for some
simple distribution which presents the same asymptotics as K0, Kj or Lj,k. Indeed, consider
for instance the kernel K0. Its behaviour at infinity heuristically depends on the behaviour near
the origin of its Fourier transform K̂0. By formula (23), the function K̂0 behaves near the origin
like the function R̂c

0 defined by

∀ξ ∈ RN \ {0}, R̂c
0(ξ) =

|ξ|2
2|ξ|2 − c2ξ21

. (38)

Thus, the kernel K0 presumably has the same asymptotics as the tempered distribution Rc
0

whose Fourier transform is equal to R̂c
0. However, the computation of the asymptotics of Rc

0 is
much easier. Indeed, the function R̂c

0 writes

∀ξ = (ξ1, ξ⊥) ∈ RN \ {0}, R̂c
0(ξ) =

N∑

j=1

1
2− c2δj,1

R̂j,j

(√
1− c2

2
ξ1, ξ⊥

)
, (39)

where Rj,j is the so-called composed Riesz operator defined by formula (26). By standard Riesz
operator theory, the distribution Rj,k is actually given by

Rj,k =
Γ(N

2 )

2π
N
2

(
PV (R̃j,k1B(0,1)) + R̃j,k1B(0,1)c

)
+
δj,k
N
δ0, (40)

where δ0 denotes the Dirac mass at the origin, and PV (R̃j,k1B(0,1)) denotes the principal value

at the origin of the function R̃j,k : x 7→ δj,k|x|2−Nxjxk

|x|N+2 , defined by

∀φ ∈ C∞0 (RN ),
〈
PV (R̃j,k1B(0,1)), φ

〉
=

∫

B(0,1)

δj,k|x|2 −Nxjxk

|x|N+2

(
φ(x)− φ(0)

)
dx.

In particular, formula (40) give the asymptotics of Rj,k, which are equal to

∀σ ∈ SN−1, RNRj,k(Rσ) →
R→+∞

Γ(N
2 )

2π
N
2

(δj,k −Nσjσk).

By formula (39), the asymptotics of Rc
0 are then given by

∀σ ∈ SN−1, RNRc
0(Rσ) →

R→+∞
Γ(N

2 )(1− c2

2 )
N−3

2 c2

8π
N
2

(
1− c2

2 + c2σ2
1

2

)N
2

(
1− Nσ2

1

1− c2

2 + c2σ2
1

2

)
. (41)

The formal simplification above then yields the value of K0,∞, which is presumably equal to the
second member of equation (41). The same argument also yields the values of Kj,∞ and Lj,k,∞,
and consequently, explicit expressions of η∞, θ∞ and v∞ by equations (27), (28), (36) and (37).
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Now, in order to complete the proof of Theorem 2, we must justify rigorously the strategy
above. The first step is to establish that the kernels K0, Kj and Lj,k really have the same
asymptotics as the tempered distributions Rc

0, R
c
1,j and Sc

j,k, whose Fourier transforms are given
by formula (38) and

R̂c
1,j(ξ) =

ξ1ξj
2|ξ|2 − c2ξ21

, (42)

Ŝc
j,k(ξ) =

ξ21ξjξk
2|ξ|4 − c2ξ21 |ξ|2

. (43)

This claim results from integral expression (35). More precisely, we prove the next proposition
for a more general class of kernels.

Proposition 1. Let j ∈ {1, . . . , N}, and σ ∈ SN−1 such that σj 6= 0. Consider a tempered
distribution K whose Fourier transform

K̂ =
P

Q

is a rational fraction which belongs to K̂(RN ) and such that

∀ξ ∈ RN \ {0}, Q(ξ) 6= 0.

Assume moreover that the degrees of the homogeneous polynomial components of P and Q of
lower degree (respectively denoted S0 and T0) are equal, and denote

∀ξ ∈ RN \ {0}, R̂(ξ) =
S0(ξ)
T0(ξ)

, (44)

Then, the function K∞ defined by formula (29) writes

K∞(σ) =
iN

(2πσj)N

(∫

B(0,1)
∂N

j R̂(ξ)(eiξ.σ − 1)dξ +
∫

SN−1

ξj∂
N−1
j R̂(ξ)dξ

− 1
iσj

( ∫

B(0,1)c

∂N+1
j R̂(ξ)eiξ.σdξ +

∫

SN−1

ξj∂
N
j R̂(ξ)eiξ.σdξ

))
.

(45)

Proposition 1 results from the strategy above. The functions Ri of formula (34) only depend
on the behaviour near the origin of K̂. In turn, this behaviour only depends on the homogeneous
polynomial components of lowest degree of the numerator and denominator of K̂, i.e. on R̂. More
precisely, we will establish that the functions Ri are identically equal to ∂N+i−1

j R̂. Proposition
1 will then result from equation (35).

We now apply Proposition 1 to link the asymptotics of K0, Kj and Lj,k to the asymptotics
of Rc

0, R
c
1,j and Sc

j,k.

Corollary 1. Let (j, k, l) ∈ {1, . . . , N}3, and σ ∈ SN−1 such that σl 6= 0. Then, the functions
K0,∞, Kj,∞ and Lj,k,∞ respectively write

K0,∞(σ) =
iN

(2πσl)N

(∫

B(0,1)
∂N

l R̂
c
0(ξ)(e

iξ.σ − 1)dξ +
∫

SN−1

ξl∂
N−1
l R̂c

0(ξ)dξ

− 1
iσl

( ∫

B(0,1)c

∂N+1
l R̂c

0(ξ)e
iξ.σdξ +

∫

SN−1

ξl∂
N
l R̂

c
0(ξ)e

iξ.σdξ

))
,

(46)

8



Kj,∞(σ) =
iN

(2πσl)N

(∫

B(0,1)
∂N

l R̂
c
1,j(ξ)(e

iξ.σ − 1)dξ +
∫

SN−1

ξl∂
N−1
l R̂c

1,j(ξ)dξ

− 1
iσl

(∫

B(0,1)c

∂N+1
l R̂c

1,j(ξ)e
iξ.σdξ +

∫

SN−1

ξl∂
N
l R̂

c
1,j(ξ)e

iξ.σdξ

))
,

(47)

and

Lj,k,∞(σ) =
iN

(2πσl)N

(∫

B(0,1)
∂N

l Ŝ
c
j,k(ξ)(e

iξ.σ − 1)dξ +
∫

SN−1

ξl∂
N−1
l Ŝc

j,k(ξ)dξ

− 1
iσl

(∫

B(0,1)c

∂N+1
l Ŝc

j,k(ξ)e
iξ.σdξ +

∫

SN−1

ξl∂
N
l Ŝ

c
j,k(ξ)e

iξ.σdξ

))
.

(48)

The second step is to compute explicitly the second members of equations (46), (47) and
(48). This gives the explicit values of K0,∞, Kj,∞ and Lj,k,∞.

Proposition 2. Let (j, k) ∈ {1, . . . , N}2 and σ ∈ SN−1. The functions K0,∞, Kj,∞ and Lj,k,∞
are respectively equal to

K0,∞(σ) =
Γ(N

2 )(1− c2

2 )
N−3

2 c2

8π
N
2 (1− c2

2 + c2σ2
1

2 )
N
2

(
1− Nσ2

1

1− c2

2 + c2σ2
1

2

)
, (49)

Kj,∞(σ) =
Γ(N

2 )(1− c2

2 )
N−1

2

4π
N
2 (1− c2

2 + c2σ2
1

2 )
N
2

(
δj,1

(
1− c2

2

)− δj,1+1

2 − N(1− c2

2 )−δj,1σ1σj

1− c2

2 + c2σ2
1

2

)
, (50)

Lj,k,∞(σ) =
Γ(N

2 )

2c2π
N
2

((
1− c2

2

)N
2

(
δj,k(1− c2

2 )−
δj,1+δk,1+1

2

(1− c2

2 + c2σ2
1

2 )
N
2

− N(1− c2

2 )−δj,1−δk,1+ 1
2σjσk

(1− c2

2 + c2σ2
1

2 )
N+2

2

)

− δj,k +Nσjσk

)
. (51)

Proposition 2 results from formula (40). Indeed, by equations (38), (42) and (43), the distri-
butions Rc

0, R
c
1,j and Sc

j,k express in function of Rj,k. Therefore, the computation of the second
member of equations (46), (47) and (48) reduces to the computation of the integrals

Ij,k(σ) =
iN

(2πσl)N

( ∫

B(0,1)
∂N

l R̂j,k(ξ)(eiξ.σ − 1)dξ +
∫

SN−1

ξl∂
N−1
l R̂j,k(ξ)dξ

− 1
iσl

( ∫

B(0,1)c

∂N+1
l R̂j,k(ξ)eiξ.σdξ +

∫

SN−1

ξl∂
N
l R̂j,k(ξ)eiξ.σdξ

))
,

(52)

for every (j, k) ∈ {1, . . . , N}2 and σ ∈ SN−1 (with l ∈ {1, . . . , N} such that σl 6= 0). Actually,
we already computed such integrals in [8] in case j = k = 1 (Cf Theorem 6 of [8]). The same
argument yields the following lemma in the general case.

Lemma 1. Let 1 ≤ j, k ≤ N and σ ∈ SN−1 such that σj 6= 0. Then, the following equality holds

Ij,k(σ) =
Γ(N

2 )

2π
N
2

(δj,k −Nσjσk). (53)

Lemma 1 finally gives the values of K0,∞, Kj,∞ and Lj,k,∞. Formulae (27), (28), (36) and
(37) then give the values of η∞, θ∞ and v∞, which completes the proof of Theorem 2.
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4 Plan of the paper

The paper splits in three parts. The first part is devoted to the proofs of Proposition 1 and
Corollary 1, in which the asymptotic study of K0, Kj and Lj,k is reduced to the study of
simplified kernels. The second part deals with the proof of Proposition 2, which brings explicit
asymptotics for K0, Kj and Lj,k. In the last part, Theorem 2 is deduced from Proposition 2
and formulae (27), (28), (36) and (37) by some algebraic computations.

1 Reduction to simplified kernels

In the first part, we reduce the computation of the asymptotics of K0, Kj and Lj,k to the
computation of the asymptotics of Rc

0, R
c
1,j and Sc

j,k. This simplification yields integral formulae
(46), (47) and (48) of Corollary 1. However, we first compute a similar formula for a more
general class of kernels in Proposition 1.

Proof of Proposition 1. Let σ ∈ SN−1 and consider some integer j ∈ {1, . . . , N} such that σj 6= 0.
Using notation (34), we claim that

Claim 1. Let i ∈ {0, 1, 2}. The following equality holds for almost every ξ ∈ RN \ {0},
Ri(ξ) = ∂N+i−1

j R̂(ξ). (54)

Proof of Claim 1. Indeed, consider some integer p ∈ N. By definition (44), the function R̂ is a
homogeneous rational fraction, so, its partial derivative ∂p

j R̂ writes

∂p
j R̂ =

Sp

Tp
,

where Sp and Tp are homogeneous polynomial functions inductively defined by

Sp+1 = ∂jSpTp − Sp∂jTp,

Tp+1 = T 2
p .

(55)

Moreover, since Q does not vanish on RN \ {0}, T0 is not identically equal to 0. Therefore, by a
straightforward inductive argument, Tp does not identically vanish too, and its degree is equal
to 2pdo(T0). On the other hand, either Sp vanishes, or its degree is equal to do(S0) + (2p −
1)do(T0)− p.

Now, consider the partial derivative ∂p
j K̂, and denote vp and v′p, the valuations of the poly-

nomial functions Pp and Qp defined by formulae (31) and (32). On one hand, S0 and T0 are by
definition the homogeneous polynomial components of P and Q of lower degree. Hence, v0 and
v′0 are respectively equal to do(S0) and do(T0), and with notation (30),

Pv0,0 = S0 and Qv′0,0 = T0.

On the other hand, by inductive equations (31) and (32), the homogeneous polynomial com-
ponents of lower degree of Pp+1 and Qp+1 which may not vanish, are respectively equal to
∂jPvp,pQv′p,p − Pvp,p∂jQv′p,p and Q2

v′p,p. For the denominator Qp, it follows from this inductive
property, equations (55), and the non-vanishing of the polynomial functions Tp that for every
p ∈ N,

v′p = do(Tp) = 2pdo(T0), (56)
Qv′p,p = Tp. (57)

10



Likewise, for the numerator Pp, either the polynomial function Sp does not vanish, and conse-
quently, vp and Pvp,p are respectively equal to do(Sp) = do(S0)+(2p−1)do(T0)−p and Sp, either
Sp is identically equal to 0, and subsequently, vp is either equal to −∞ or strictly more than
do(S0) + (2p − 1)do(T0)− p. In short, we obtain

vp = −∞ or vp ≥ do(S0) + (2p − 1)do(T0)− p. (58)

Moreover, if vp = do(S0) + (2p − 1)do(T0)− p, then,

Pvp,p = Sp 6= 0. (59)

Consider finally the set
Ωp := {ξ ∈ RN \ {0}, Sp(ξ) 6= 0}.

On one hand, if Sp = 0, by assertions (58) and (59), either Pp is identically equal to 0, or its
valuation vp is strictly more than do(S0) + (2p − 1)do(T0)− p. When Pp = 0, we obtain that

∀ξ ∈ RN \ {0}, lim
R→+∞

∂p
j K̂

(
ξ
R

)

Rp
= ∂p

j R̂(ξ) = 0. (60)

Likewise, when vp > do(S0) + (2p − 1)do(T0)− p, we compute by definition (30) and statements
(56) and (57) that for every ξ ∈ RN \ {0},

R−p∂p
j K̂

( ξ
R

)
=

dp∑
k=vp

R−kPk,p(ξ)

d′p∑
k=2pdo(T0)

Rp−kQk,p(ξ)

= R2pdo(T0)−p−vp

(
Pvp,p(ξ)
Tp(ξ)

+ o
R→+∞

(1)
)
.

However, since do(S0) = do(T0), we have

2pdo(T0)− p− vp < do(T0)− do(S0) = 0,

so,
R2pdo(T0)−p−vp →

R→+∞
0,

and assertion (60) also holds when vp > do(S0) + (2p − 1)do(T0) − p. Thus, it holds as soon as
Sp = 0.

On the other hand, if Sp 6= 0, the set Ωp is the non-vanishing set of a non-vanishing polynomial
function. Therefore, Ωp is a set of full measure. Moreover, we compute by definition (30) and
assertions (56), (57) and (59) that for every ξ ∈ Ωp,

R−p∂p
j K̂

( ξ
R

)
= Rv′p−vp−p

(
Sp(ξ)
Tp(ξ)

+ o
R→+∞

(1)
)

= ∂p
j R̂(ξ) + o

R→+∞
(1).

Hence, we have for almost every ξ ∈ RN \ {0},

R−p∂p
j K̂

( ξ
R

)
→

R→+∞
∂p

j R̂(ξ). (61)

Thus, by equation (60), assertion (61) holds almost everywhere in any case. By choosing p
equal to N + i− 1, and by invoking property (33), we conclude that formula (54) holds almost
everywhere.
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End of the proof of Proposition 1. Proposition 1 follows from equation (35) and Claim 1.
Indeed, formula (45) is a direct consequence of equation (35) and assertion (54).

Corollary 1 then specifies the results of Proposition 1 to K0, Kj and Lj,k.

Proof of Corollary 1. Indeed, the kernels K0, Kj and Lj,k satisfy all the assumptions of Proposi-
tion 1. By formulae (23), (24) and (25), their Fourier transforms are rational fractions in K̂(RN )
(see the proof of Corollary 3 of [7]), whose denominator only vanish at the origin. Moreover, the
degrees of the homogeneous components of lower order of the numerator and denominator of
their Fourier transforms are equal. Thus, formula (45) holds for K0, Kj and Lj,k. This formula
gives equations (46), (47) and (48) by noticing that the functions R̂ associated to K0, Kj and
Lj,k are respectively R̂c

0, R̂
c
1,j and Ŝc

j,k.

2 Explicit asymptotics of the kernels

In order to obtain explicit asymptotics of K0, Kj and Lj,k, we now compute explicitly formulae
(46), (47) and (48). As mentioned in the introduction, this computation results from explicit
expression (40) for Rj,k. This expression gives formula (53) of Lemma 1, which yields formulae
(49), (50) and (51) of Proposition 2 by standard algebraic computations. Actually, Lemma 1 is
reminiscent from [8] where it is proved for j = k = 1. However, we mention its proof for sake of
completeness.

Proof of Lemma 1. The proof of Lemma 1 relies on the following lemma which is reminiscent
from [8].

Lemma 2 ([8]). Let 1 ≤ j ≤ N and λ > 0. Consider a tempered distribution f on RN such that
its Fourier transform belongs to C∞(RN \{0}). Assume moreover that there exist some integers
1 ≤ p ≤ m and some positive real number A such that

(i) ∀ξ ∈ RN \ {0}, |f̂(ξ)| ≤ A(|ξ|−r + |ξ|s),
(ii) ∀(k, ξ) ∈ {0, . . . , p} ×B(0, 1), |ξ|N−p+k|∂k

j f̂(ξ)| ≤ A,

(iii) ∂m
j f̂ ∈ L1(B(0, 1)c),

(iv) ∀k ∈ {0, . . . ,m− 1}, ∂k
j f̂ ∈ Lqm−k(B(0, 1)c),

where r < N , s ≥ 0, 1 < qk <
N

N−k if 1 ≤ k ≤ N − 1, and 1 < qk ≤ +∞ if k > N . Then, the
function x 7→ xp

jf(x) is continuous on Ωj = {x ∈ RN , xj 6= 0} and satisfies for every x ∈ Ωj,

xp
jf(x) =

ip

(2π)N

(
(−ixj)p−m

∫

B(0,λ)c

∂m
j f̂(ξ)eix.ξdξ +

1
λ

∫

S(0,λ)
ξj∂

p−1
j f̂(ξ)dξ

+
m−1∑

k=p

(−ixj)p−k−1

λ

∫

S(0,λ)
ξj∂

k
j f̂(ξ)eix.ξdξ +

∫

B(0,λ)
∂p

j f̂(ξ)(eix.ξ − 1)dξ

)
.

Lemma 2 commonly yields integral expressions of some tempered distribution f in function
of some partial derivatives of its Fourier transform f̂ , which presents the advantage to be known
explicitly. On the contrary, in this paper, it will be used to compute the explicit value of some
integral expressions like (52). Indeed, consider the composed Riesz kernel Rj,k. By formula (26),
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its Fourier transform R̂j,k belongs to C∞(RN \ {0}). Moreover, R̂j,k is a homogeneous rational
fraction of degree 0. Therefore, its partial derivative of order α is a homogeneous rational
fraction of order −|α|. In particular, Rj,k satisfies all the assumptions of Lemma 2 with p = N ,
m = N +1, r = s = 0 and qk = N

N+1−k for every 1 ≤ k ≤ N . Hence, the function x 7→ xp
lRj,k(x)

is continuous on Ωl = {x ∈ RN , xl 6= 0} for every l ∈ {1, . . . , N}, and satisfies for every λ > 0
and every x ∈ Ωl,

xN
l Rj,k(x) =

iN

(2π)N

(
i

xl

∫

B(0,λ)c

∂N+1
l R̂j,k(ξ)eix.ξdξ +

i

λxl

∫

S(0,λ)
ξl∂

N
l R̂j,k(ξ)eix.ξdξ

+
1
λ

∫

S(0,λ)
ξl∂

N−1
l R̂j,k(ξ)dξ +

∫

B(0,λ)
∂N

l R̂j,k(ξ)(eix.ξ − 1)dξ

)
.

On the other hand, the restriction of Rj,k to RN \ {0} writes by formula (40),

∀x ∈ RN \ {0}, Rj,k(x) =
Γ(N

2 )

2π
N
2

δj,k|x|2 −Nxjxk

|x|N+2
,

which gives for every x ∈ Ωl,

Γ(N
2 )

2π
N
2

δj,k|x|2 −Nxjxk

|x|N+2
=

iN

(2πxl)N

(
i

xl

∫

B(0,λ)c

∂N+1
l R̂j,k(ξ)eix.ξdξ

+
i

λxl

∫

S(0,λ)
ξle

ix.ξ∂N
l R̂j,k(ξ)dξ +

1
λ

∫

S(0,λ)
ξl∂

N−1
l R̂j,k(ξ)dξ

+
∫

B(0,λ)
∂N

l R̂j,k(ξ)(eix.ξ − 1)dξ

)
.

By writing x = Rσ, where R > 0 and σ ∈ SN−1 such that σl 6= 0, and choosing λ = 1
R , the

change of variables u = Rξ leads to

Γ(N
2 )

2π
N
2

(
δj,k −Nσjσk

)
=

iN

(2πσl)N

(
i

σl

∫

B(0,1)c

∂N+1
l R̂j,k( u

R)
RN+1

eiσ.udu

+
∫

SN−1

∂N−1
l R̂j,k( u

R)
RN−1

uldu+
i

σl

∫

SN−1

∂N
l R̂j,k( u

R)
RN

eiσ.uuldu

+
∫

B(0,1)

∂N
l R̂j,k( u

R)
RN

(eiσ.u − 1)du

)
.

(62)

However, the partial derivative of order α of R̂j,k is a homogeneous rational fraction of degree
−|α|. Therefore, for every n ∈ N and u ∈ RN \ {0},

∂n
l R̂j,k( u

R)
Rn

= ∂n
l R̂j,k(u).

Consequently, by definition (52) and equation (62), formula (53) holds, which completes the
proof of Lemma 1.

Proposition 2 then follows from Lemma 1 by some algebraic computations.
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Proof of Proposition 2. Let (j, k, l) ∈ {1, . . . , N}3. Consider the tempered distribution Rc
j,k

whose Fourier transform is

∀ξ ∈ RN \ {0}, R̂c
j,k(ξ) :=

ξjξk
2|ξ|2 − c2ξ21

. (63)

The function R̂c
j,k is a homogeneous rational fraction of degree 0 only singular at the origin.

Therefore, its partial derivative ∂αR̂c
j,k is a homogeneous rational fraction of degree−|α|, which is

smooth on RN\{0}. Consequently, the functions ξ 7→ ∂N+1
l R̂c

j,k(ξ)e
iσ.ξ and ξ 7→ ∂N

l R̂
c
j,k(ξ)(e

iσ.ξ−
1) belong to L1(B(0, 1)c), respectively L1(B(0, 1)), for every σ ∈ SN−1. Thus, the function Ic

j,k

defined by

Ic
j,k(σ) :=

iN

(2πσl)N

(
i

σl

∫

B(0,1)c

∂N+1
l R̂c

j,k(ξ)e
iσ.ξdξ +

i

σl

∫

SN−1

ξl∂
N
l R̂

c
j,k(ξ)e

iσ.ξdξ

+
∫

SN−1

ξl∂
N−1
l R̂c

j,k(ξ)dξ +
∫

B(0,1)
∂N

l R̂
c
j,k(ξ)(e

iσ.ξ − 1)dξ
)
,

(64)

is well-defined for every σ ∈ SN−1 such that σl 6= 0. Moreover, we claim that

Claim 2. Let (j, k, l) ∈ {1, . . . , N}3 and σ ∈ SN−1 such that σl 6= 0. Then,

Ic
j,k(σ) =

Γ(N
2 )(1− c2

2 )
N−1−δj,1−δk,1

2

4π
N
2 (1− c2

2 + c2σ2
1

2 )
N
2

(
δj,k −

(
1− c2

2

)1− δj,1+δk,1
2 σjσk

1− c2

2 + c2σ2
1

2

)
. (65)

Proof of Claim 2. By definitions (26) and (63), we compute

∀ξ = (ξ1, ξ⊥) ∈ RN \ {0}, R̂c
j,k(ξ) =

1

2(1− c2

2 )
δj,1+δk,1

2

R̂j,k

(√
1− c2

2
ξ1, ξ⊥

)
. (66)

Therefore, the first integral of Ic
j,k(σ) writes

∫

B(0,1)c

∂N+1
l R̂c

j,k(ξ)e
iσ.ξdξ =

(
1− c2

2

)Nδj,1−δk,1
2

2

∫

B(0,1)c

∂N+1
l R̂j,k

(√
1− c2

2
ξ1, ξ⊥

)
eiσ.ξdξ

=

(
1− c2

2

)Nδj,1−δk,1−1

2

2

∫

|ξ|2− c2

2
|ξ⊥|2>1− c2

2

∂N+1
l R̂j,k(ξ)eirσσ′.ξdξ,

where

rσ =

√
2− c2 + c2σ2

1

2− c2
, (67)

and

σ′ =
1

(1− c2

2 + c2σ2
1

2 )
1
2

(
σ1,

√
1− c2

2
σ⊥

)
. (68)

However, the function ∂N+1
l R̂j,k is a homogeneous rational fraction of degree −N − 1, so, the

change of variables u = rσξ gives

iN+1

(2π)NσN+1
l

∫

B(0,1)c

∂N+1
l R̂c

j,k(ξ)e
iσ.ξdξ =

iN+1(1− c2

2 )d

(πrσ)N (2σ′l)N+1

∫

Ωc,σ

∂N+1
l R̂j,k(u)eiσ

′.udu, (69)
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where Ωc,σ = {u ∈ RN , |u|2 − c2

2 |u⊥|2 > r2σ(1− c2

2 )} and d = − δj,1+δk,1+1
2 . Likewise, the second

integral writes by formula (66) and the change of variables above,

iN+1

(2π)NσN+1
l

∫

SN−1

ξl∂
N
l R̂

c
j,k(ξ)e

iσ.ξdξ =
iN+1(1− c2

2 )d

(πrσ)N (2σ′l)N+1

∫

Λc,σ

νl(u)∂N
l R̂j,k(u)eiσ

′.udu, (70)

where Λc,σ = ∂Ωc,σ and νl is the lth-component of the outward normal of Λc,σ. The third and
fourth integrals respectively become by the same arguments,

iN

(2πσl)N

∫

SN−1

ξl∂
N−1
l R̂c

j,k(ξ)dξ =
iN (1− c2

2 )d

2N+1(πrσσ′l)N

∫

Λc,σ

νl(u)∂N−1
l R̂j,k(u)du, (71)

and

iN

(2πσl)N

∫

B(0,1)
∂N

l R̂
c
j,k(ξ)(e

iσ.ξ − 1)dξ =
iN (1− c2

2 )d

2N+1(πrσσ′l)N

∫

Ωc
c,σ

∂N
l R̂j,k(u)(eiσ

′.u − 1)du. (72)

Hence, by equations (64), (69), (70), (71) and (72),

Ic
j,k(σ) =

iN (1− c2

2 )d

2N+1(πrσσ′l)N

( ∫

Ωc
c,σ

∂N
l R̂j,k(u)(eiσ

′.u − 1)du+
∫

Λc,σ

νl(u)∂N−1
l R̂j,k(u)du

+
i

σ′l

(∫

Λc,σ

νl(u)∂N
l R̂j,k(u)eiσ

′.udu+
∫

Ωc,σ

∂N+1
l R̂j,k(u)eiσ

′.udu

))
,

so, by integrating by parts,

Ic
j,k(σ) =

iN (1− c2

2 )d

2N+1(rσσ′l)N

(∫

B(0,1)
∂N

l R̂j,k(u)(eiσ
′.u − 1)du+

∫

SN−1

νl(u)∂N−1
l R̂j,k(u)du

+
i

σ′l

( ∫

SN−1

νl(u)∂N
l R̂j,k(u)eiσ

′.udu+
∫

B(0,1)c

∂N+1
l R̂j,k(u)eiσ

′.udu

))
.

Finally, definition (52) and formula (53) of Lemma 1 yield

Ic
j,k(σ) =

(1− c2

2 )d

2rN
σ

Ij,k(σ′) =
Γ(N

2 )(1− c2

2 )−
δj,1+δk,1+1

2

4rN
σ π

N
2

(δj,k − σ′kσ
′
l),

which is exactly formula (65) by definitions (67) and (68).

End of the proof of Proposition 2. The proof of formulae (49), (50) and (51) which give the
asymptotics of K0, Kj and Lj,k now follows from Claim 2. Indeed, by definitions (38),(43) and
(63), the Fourier transforms R̂c

0 and Ŝc
j,k write

R̂c
0(ξ) =

N∑

j=1

R̂c
j,j(ξ),

Ŝc
j,k(ξ) =

2
c2
R̂j,k(ξ)− 1

c2
R̂c

j,k(ξ),
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so, by formulae (46), (47) and (48),

K0,∞(σ) =
N∑

l=1

Ic
l,l(σ),

Kj,∞(σ) =Ic
1,j(σ),

Lj,k,∞(σ) =
2
c2
Ij,k(σ)− 1

c2
Ic
j,k(σ).

Formulae (49), (50) and (51) then result from formulae (53) and (65).

3 Explicit asymptotics of the travelling waves

By formulae (49), (50) and (51), we are now in position to compute v∞ and to end the proof of
Theorem 2.

Proof of Theorem 2. Indeed, equation (28) gives the value of the function v∞ in function of the
integrals of F and Gk on RN , and of the values of Kj,∞ and Lj,k,∞. However, we now know
all these quantities by formulae (36), (37), (50) and (51). This yields formulae (16), (17) and
(18) of Theorem 2. Moreover, the same argument (based on formula (27) for η∞) also yields the
values of η∞ and θ∞ which are equal to

η∞(σ) =
cΓ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

((
4−N

2
cE(v) +

(
2 +

N − 3
2

c2
)
p(v)

)(
1

(1− c2

2 + c2σ2
1

2 )
N
2

− Nσ2
1

(1− c2

2 + c2σ2
1

2 )
N+2

2

)
− 2

(
1− c2

2

) N∑

j=2

Pj(v)
Nσ1σj

(1− c2

2 + c2σ2
1

2 )
N+2

2

)
,

and

θ∞(σ) =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

((
4−N

2
cE(v) +

(
2 +

N − 3
2

c2
)
p(v)

)
σ1

(1− c2

2 + c2σ2
1

2 )
N
2

+2
(

1− c2

2

) N∑

j=2

Pj(v)
σj

(1− c2

2 + c2σ2
1

2 )
N
2

)
.
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