
Decay for travelling waves in the Gross-Pitaevskii equation

Philippe Gravejat 1

Abstract

We study the limit at infinity of the travelling waves of finite energy in the Gross-
Pitaevskii equation in dimension larger than two: their uniform convergence to a constant
of modulus one and their asymptotic decay.

Résumé

Nous étudions la limite à l’infini des ondes progressives d’énergie finie pour les équations
de Gross-Pitaevskii en dimension supérieure ou égale à deux: leur convergence uniforme vers
une constante de module un et leur comportement asymptotique.

Introduction

In this article, we will focus on the travelling waves in the Gross-Pitaevskii equation

i∂tu = ∆u+ u(1− |u|2)

of the form u(t, x) = v(x1 − ct, . . . , xN ). The parameter c > 0 represents the speed of the
travelling wave and the simplified equation for v, which we will study now, is

ic∂1v + ∆v + v(1− |v|2) = 0. (1)

The Gross-Pitaevskii equation is a physical model for superconductivity and superfluidity which
is associated to the energy

E(v) =
1
2

∫

RN

|∇v|2 +
1
4

∫

RN

(1− |v|2)2 =
∫

RN

e(v).

The travelling waves of finite energy play an important role in the long time dynamics of general
solutions and were first considered by C.A. Jones and P.H. Roberts [11]: they conjectured that
they only exist when c <

√
2, which will be supposed henceforth, and that they are axisymmetric

around the axis x1. They also proposed an asymptotic development at infinity for these waves
up to a multiplicative constant of modulus one. In dimension two, they conjectured that

v(x)− 1 ∼
|x|→+∞

iαx1

x2
1 + (1− c2

2 )x2
2

(2)

and in dimension three,

v(x)− 1 ∼
|x|→+∞

iαx1

(x2
1 + (1− c2

2 )(x2
2 + x2

3))
3
2

, (3)
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where the constant α is supposed to be a relevant physical value, the stretched dipole coefficient.

F. Béthuel and J.C. Saut [4, 5] first studied mathematically these travelling waves: they
showed their existence in dimension two when c is small, and also gave a mathematical proof
for their limit at infinity.

Theorem 1. In dimension two, a travelling wave for the Gross-Pitaevskii equation of finite
energy and speed c <

√
2 satisfies up to a multiplicative constant of modulus one

v(x) →
|x|→+∞

1.

In dimension larger than three, F. Béthuel, G. Orlandi and D. Smets [2] showed their existence
when c is small, and in every dimension, A. Farina [9] proved a universal bound for their modulus,
and we proved the non-existence of non-constant travelling waves for every c >

√
2 [10].

In this paper, we will complete those results by proving the convergence of the travelling
waves at infinity in every dimension larger than three and by giving a first estimate of their
decay, which is consistent with the conjectures (2)-(3) of C.A. Jones and P.H. Roberts [11]. We
will precisely prove the following theorem.

Theorem 2. In dimension larger than three, a travelling wave for the Gross-Pitaevskii equation
of finite energy and speed c <

√
2 satisfies up to a multiplicative constant of modulus one

v(x) →
|x|→+∞

1.

Moreover, in every dimension larger than two, the function

x 7→ |x|N−1(v(x)− 1)

is bounded on RN .

By this theorem, we can characterize all the Lp-spaces to which the function v − 1 belongs.

Corollary 1. The function v − 1 belongs to all the spaces Lp(RN ) for every

N

N − 1
< p ≤ +∞.

This corollary is particularly interesting in dimension larger than three because in this case,
the function v − 1 belongs to the space L2(RN ), and therefore, in view of the energy bound,
also to the space H1(RN ): thus, the function (x, t) 7→ v(x1 − ct, x2, . . . , xN ) is solution of the
Cauchy problem

i∂tu = ∆u+ u(1− |u|2)
with the initial data

u(0, x) = v(x)

in the space C0(R, 1 + H1(RN )). The following theorem due to F. Béthuel and J.C. Saut [4]
asserts that this equation is well-posed in the space 1 +H1(RN ).

Theorem 3. Let v0 ∈ 1 + H1(RN ). There is a unique solution v ∈ C0(R, 1 + H1(RN )) of
the time-dependant Gross-Pitaevskii equation. Moreover, the energy E is conserved, and the
solution v depends continuously on the initial data v0.
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Therefore, we can study the stability of a travelling wave in the space 1 + H1(RN ), and
understand better the long time dynamics of the time dependant Gross-Pitaevskii equation.

The proof of Corollary 1 being an immediate consequence of Theorem 2, this paper will be
organized around the proof of this theorem.

In a first part, we will study the local smoothness and the Sobolev regularity of a travelling
wave v, by proving:

Theorem 4. If v is a solution of (1) in L1
loc(RN ) of finite energy, then v is regular, bounded

and its gradient belongs to all the spaces W k,p(RN ) for k ∈ N and 1 < p ≤ +∞.

We will first prove that v is regular and belongs to all the Lp-spaces for 2 ≤ p ≤ +∞: this
will be done by a bootstrap argument adapted from articles of F. Béthuel and J.C. Saut [4, 3].
We will deduce that the modulus ρ of v does not vanish at infinity, which leads to the equations

{
div(ρ2∇θ) = − c

2∂1ρ
2

−∆ρ+ ρ|∇θ|2 + cρ∂1θ = ρ(1− ρ2).
(4)

by writing v = ρeiθ. We will then write new equations in the more interesting variables η = 1−ρ2

and ∇θ: denoting F = 2η2 − 2cη∂1θ + 2|∇v|2 and G = η∇θ, we observe that we can write the
equations 




∆η − 2η + F + 2c∂1θ = 0

∆θ − c
2∂1η =

N∑
j=1

∂jGj .

By taking the laplacian of the first line, and taking the operator ∂1 in the second line, we have

∆2η − 2∆η + c2∂2
1,1η = −∆F − 2c

N∑

j=1

∂1∂jGj (5)

and, by taking the operator ∂j in the second line, for every j ∈ J1, NK,

∆∂jθ =
c

2
∂1∂jη +

N∑

k=1

∂j∂kGk. (6)

Obviously, those equations are only valid at a neighborhood of infinity and we will have to
introduce cut-off functions in order to obtain an equation valid on the whole space. Eluding
for the moment this difficulty, we can develop an argument due to J.L. Bona and Yi A. Li [6],
and A. de Bouard and J.C Saut [8] (Also see [14, 13] for many more details), which relies on
the transformation of a PDE in a convolution equation. In fact, equations (5) and (6) can be
written

η = K0 ∗ F + 2c
N∑

j=1

K1,j ∗Gj (7)

where K0 and K1,j are the kernels of Fourier transformation,

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
,

respectively,

K̂1,j(ξ) =
ξ1ξj

|ξ|4 + 2|ξ|2 − c2ξ21
,
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and, for every j ∈ J1, NK,

∂jθ =
c

2
K1,j ∗ F + c2

N∑

k=1

L1,j,k ∗Gk +
N∑

k=1

Rj,k ∗Gk (8)

where L1,j,k and Rj,k are the kernels of Fourier transformation,

L̂1,j,k(ξ) =
ξ21ξjξk

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ21)
,

respectively,

R̂j,k(ξ) =
ξjξk
|ξ|2 .

Those equations seem more involved than the initial ones, but are more adapted in order to
study the algebraic decay of the functions η and ∇θ.

We will understand why by studying a very simple example. Let us consider a convolution
equation of the form

g = K ∗ f,
where we suppose that the functions K and f are regular functions. We want to study the
algebraic decay of the function g ie to determine all the indices α for which it belongs to the
space

M∞
α (RN ) = {u : RN 7→ C/‖u‖M∞

α (RN ) = sup{|x|α|u(x)|, x ∈ RN} < +∞},
in function of the algebraic decay of K and f . We prove the following lemma.

Lemma 1. Suppose that K and f belong to the space M∞
α1

(RN ), respectively M∞
α2

(RN ), where
α1 > N and α2 > N . Then the function g belongs to the space M∞

α (RN ) for

α ≤ min{α1, α2}.

Proof. The proof of this lemma relies on Young’s inequalities:

∀x ∈ RN , |x|α|g(x)| ≤ |x|α
∫

RN

|K(x− y)||f(y)|dy

≤ A

∫

RN

(|x− y|α|K(x− y)||f(y)|+ |K(x− y)||y|α|f(y)|) dy

≤ A
(
‖K‖M∞

α (RN )‖f‖L1(RN ) + ‖K‖L1(RN )‖f‖M∞
α (RN )

)
.

Since α1 > N and α2 > N , K and f belong to L1(RN ): thus, if α ≤ min{α1, α2}, the last term
is finite, and, the function g belongs to the space M∞

α (RN ).

Of course, the assumptions α1 > N and α2 > N are quite restrictive, but, we can easily
generalize this method by using Young’s inequalities involving not only the L1-L∞ duality,
but, the Lp-Lp′ duality, and, prove easily the algebraic decay of functions which satisfy such a
convolution equation.

Our situation is close to previous example. Indeed, equations (7))-(8) can be written

(η,∇θ) = K ∗ F (η,∇θ),
where F behaves like a quadratic function in terms of the variables η and ∇θ.

In order to understand what happens in this case, we can consider the non-linear model

f = K ∗ f2,

where f and K are both regular functions. We get in this case
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Lemma 2. Suppose K and f belong to the space M∞
α1

(RN ), respectively M∞
α2

(RN ), where α1 > N
and α1 > α2 > N . Then, the function f belongs to the space M∞

α (RN ) for

α ≤ α1.

Proof. The proof of this lemma also relies on Young’s inequalities:

∀x ∈ RN , |x|α|f(x)| ≤ |x|α
∫

RN

|K(x− y)||f(y)|2dy

≤ A

∫

RN

(|x− y|α|K(x− y)||f(y)|2 + |K(x− y)||y|α|f(y)|2) dy

≤ A

(
‖K‖M∞

α (RN )‖f‖2
L2(RN ) + ‖K‖L1(RN )‖f‖2

M∞
α
2

(RN )

)
.

Since α1 > N and α2 > N , K and f belong to L1(RN ) and L2(RN ): thus, if α ≤ min{α1, 2α2},
the last term is finite, and, the function f belongs to the space M∞

α (RN ). By iterating this step,
we see that if α ≤ min{α1, 2kα2} for every k ∈ N, the function f belongs to the space M∞

α (RN ),
and we get the desired result.

The situation of the functions η and ∇θ is rather involved, but, this simple model shows that
their decay is determined by the decay of the kernels.

This lemma provides a striking optimal decay property for super linear equation. Indeed,
assuming f possesses some algebraic decay, then, if f is solution of such a convolution equation,
it decays as fast as the kernel. However, some decay of f must be established first, in order to
initiate the inductive argument.

In our particular case, we will determine the decay at infinity of the kernels K0, K1,j , L1,j,k

and Rj,k, some decay at infinity for the functions η and ∇θ, before getting their optimal decay
by the previous inductive argument.

Before doing so, we conclude this first part by showing that the kernels K0, K1,j , L1,j,k and
Rj,k are Lp-multipliers for every 1 < p < +∞, by using Lizorkin theorem [12] and standard
arguments on Riesz operators. This will end the first part by establishing the Lp-regularity of v
for 1 < p < 2.

In the second part, we will begin our study of the decay of v by studying the decay of the
kernels K0, K1,j , L1,j,k and Rj,k at the origin, where they are singular, and at infinity. This will
be done by three different ways:

• We will first use an L1-L∞ inequality, which generalizes the classical one between a function
and its Fourier transformation, and which is presummably well-known to the experts. This
follows from the next lemma:

Lemma 3. The following equality holds

∀x ∈ RN , |x|sf(x) = IN

∫

RN

∫

RN

f̂(z)− f̂(y)
|z − y|N+s

eix.ydydz

for every f ∈ S(RN ), and 0 < s < 1, where we denote

IN = ((2π)N+1

∫ +∞

0
(JN

2
−1(2πu)−

π
N
2
−1

Γ(N
2 )
u

N
2
−1)u−

N
2
−sdu)−1,
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JN
2
−1 being the Bessel function defined by

∀u ∈ R, JN
2
−1(u) =

(u
2

)N
2
−1

+∞∑

n=0

(−1)nu2n

4nn!Γ(n+ N
2 )
.

By this equality, we will prove the following theorem:

Theorem 5. Let N − 2 < α < N , n ∈ N, and (j, k, l) ∈ J1, NK3. The functions dnK0,
dnKj,k and dnLj,k,l belong to M∞

α+n(RN ).

• We will then prove independantly that all those functions are bounded even in the critical
case ie when α = N . This will be done by another duality argument in S′(RN ), and by a
classical integration by parts, and, this will give:

Theorem 6. Let n ∈ N, and (j, k, l) ∈ J1, NK3. The functions dnK0, dnKj,k and dnLj,k,l

belong to M∞
N+n(RN ).

• Finally, we will study what we shall call the composed Riesz kernels ie the kernels Rj,k: in
this case, by standard Riesz operator theory, we exactly know the form of the kernels Rj,k.
Thus, if f is a regular function, and if we denote gj,k = Rj,k ∗ f for every (j, k) ∈ J1, NK2,
we can write the formula

∀x ∈ RN , gj,k(x) = AN

∫

|y|>1

δj,k|y|2 −Nyjyk

|y|N+2
f(x− y)dy

+AN

∫

|y|≤1

δj,k|y|2 −Nyjyk

|y|N+2
(f(x− y)− f(x))dy.

Therefore, in this section, we will not study the decay of the kernels Rj,k at infinity, but
directly, the decay of the functions gj,k, when the function f belongs to L1(RN ), and the
functions |.|αf and |.|α∇f are bounded for some positive number α.

In the third part, we will study the decay of η, ∇η and ∇θ at infinity: we will first give a
refined energy estimate due to F. Béthuel, G. Orlandi and D. Smets [2],

Lemma 4. For every c <
√

2, there is a strictly positive constant αc such that the function

R→ Rαc

∫

B(0,R)c

e(v)

is bounded on R+.

which is the starting point of the whole study of the decay of v at infinity. Indeed, it enables
to prove some algebraic decay for the functions η and ∇θ, which leads to the following theorem
by the inductive method yet mentionned.

Theorem 7. The functions η, ∇η and ∇θ belong to respectively M∞
N (RN ), M∞

N+1(RN ) and
M∞

N (RN ).

The key result of this theorem is that the algebraic decay of the functions η or ∇θ is imposed
by the kernels of the equations they satisfy, which was previously explained on a simple model.

Finally, in the last part, we will first prove the uniform convergence of v at infinity towards
a constant of modulus one, v∞, and then, we will conclude the proof of Theorem 2.

We recall once more that the previous discussion is only valid with the assumption that
ρ does not vanish. In the case when ρ vanishes, the discussion can be carried on with some
modifications involving cut-off functions. In particular, we will prove the following theorem.
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Theorem 8. Let v, a function from RN to C, where N ≥ 2, and suppose that there is a bounded
domain Ω of RN such that

• ∆v + ic∂1v + v(1− |v|2) = 0 on cΩ, with 0 < c <
√

2.

• ∫
cΩ e(v) = 1

2

∫
cΩ |∇v|2 + 1

4

∫
cΩ(1− |v|2)2 < +∞.

Then, v satisfies up to a multiplicative constant of modulus one

v(x) →
|x|→+∞

1,

and, the function
x 7→ |x|N−1(v(x)− 1)

is bounded on RN .

Thus, the same results hold for equations of the form

∆v + ic∂1v + v(1− |v|2)− U.v = 0,

where U is a regular function with compact support, or for the equation on the complement of
a bounded domain Ω,

∆v + ic∂1v + v(1− |v|2) = 0,

with the Dirichlet condition v = 0 on ∂Ω (See [5, 1] for existence results).

1 Regularity of travelling waves for the Gross-Pitaevskii equa-
tion

In this part, we study the regularity of a travelling wave v of finite energy and of speed 0 < c <
√

2
in dimension N ≥ 2: we prove the following theorem by arguments taken from F. Béthuel and
J.C. Saut [4, 3].

Theorem 4. If v is a solution of (1) in L1
loc(RN ) of finite energy, then v is regular, bounded

and its gradient belongs to all the spaces W k,p(RN ) for k ∈ N and 1 < p ≤ +∞.

In particular, we establish a more precise form of equations (7) and (8), in which the cut-off
functions are included.

1.1 Lp-Regularity for 2 ≤ p ≤ +∞
We begin by establishing the following proposition, which is valid even if c ≥ √

2.

Proposition 1. v is regular, bounded and its gradient belongs to all the spaces W k,p(RN ) for
k ∈ N and 2 ≤ p ≤ +∞.

Proof. We will only prove this proposition in dimension three because the general proof is
identical with small changes of Sobolev indices. This proof is adapted from the article of F.
Béthuel and J.C. Saut [4], where it is written in dimension two: it is based on a bootstrap
method.
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We first consider a point z0 in R3 and we denote Ω, the unit ball with center z0. Then, we
consider the solutions v1 and v2 of the equations

{
∆v1 = 0 on Ω
v1 = v on ∂Ω

and { −∆v2 = v(1− |v|2) + ic∂1v := g(v) on Ω
v2 = 0 on ∂Ω.

Since the energy E(v) of v is finite, v is uniformly bounded in L4(Ω), which means that the
norm of v in L4(Ω) is finite and bounded by a constant which only depends on c and E(v) but
not on z0. Thus, v(1− |v|2) is uniformly bounded in L

4
3 (Ω) and likewise, ∂1v is also uniformly

bounded in L
4
3 (Ω), such as g(v). By standard elliptic theory, v2 is then uniformly bounded in

W 2, 4
3 (Ω), and by Sobolev embeddings, v1 is uniformly bounded in L4(Ω).

If we denote ω, the ball with center z0 and with radius 1
2 , and if we use the Caccioppoli

inequalities, v1 is uniformly bounded inW 2, 4
3 (ω) and inW 3, 12

11 (ω), which gives that v is uniformly
bounded in W 2, 4

3 (ω).

Furthermore, we compute

∀j ∈ J1, 3K, ∂jg(v) = ∂jv(1− |v|2)− 2(v.∂jv)v + ic∂2
1,jv.

So, ∂jg(v) is uniformly bounded in L
12
11 (ω), and, by standard elliptic theory, v2 is uniformly

bounded in W 3, 12
11 (ω) such as v. Finally, by Sobolev embeddings, v is uniformly bounded in

C0, 1
12 (ω): therefore, v is continuous and bounded on R3.

But, its gradient w = ∇v satisfies

−∆w − ic∂1w + (
c2

2
+ 2)w = w(1− |v|2)− 2(v.w)v + (

c2

2
+ 2)w := h(w),

and, h(w) belongs to L2(R3), which proves that w belongs to H2(R3). So w is continuous
and bounded, and by iterating, we can conclude that v is regular, bounded and that all its
derivatives belong to the spaces L2(R3) and L∞(R3). Then, we end this proof by using a
standard interpolation result between Lp-spaces.

Remark 1. This proposition shows that every weak solution of finite energy of (1) is a classical
solution.

1.2 Convolution equations

Now, we establish equations (7) and (8), in which we include the cut-off functions.

We first deduce from Proposition 1 the following lemma, which is valid even if c ≥ √
2.

Lemma 5. The modulus ρ of v and all its derivatives ∂αv satisfy




ρ(x) →
|x|→+∞

1

∂αv(x) →
|x|→+∞

0.
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Proof. Indeed, if we denote η = 1 − ρ2, η2 is uniformly continuous because v is bounded and
lipschitzian by Proposition 1. As

∫
RN η

2 is finite, we can conclude

η(x) →
|x|→+∞

0.

By the same argument, we can prove that

∂αv(x) →
|x|→+∞

0.

Thus, ρ does not vanish at the neighborhood of infinity: so, we can write there v = ρeiθ and
compute the following equations satisfied by ρ and θ,

{
div(ρ2∇θ) = − c

2∂1ρ
2

−∆ρ+ ρ|∇θ|2 + cρ∂1θ = ρ(1− ρ2).
(4)

As it was previously mentionned, we begin by denoting F = 2η2−2cη∂1θ+2|∇v|2 and G = η∇θ,
and, we compute thanks to the second equation of (4)

∆η − 2η + F + 2c∂1θ = 0,

and, thanks to the first one,

∆θ − c

2
∂1η =

N∑

j=1

∂jGj .

By substituting this equality in the previous one, we finally have for the variable η

∆2η − 2∆η + c2∂2
1,1η = −∆F − 2c

N∑

j=1

∂1∂jGj .

In fact, this equality is only valid at the points where the function ρ does not vanish. In
particular, in order to obtain an equation on the entire space, we truncate each function which
appears in this equality. Thus, we introduce a real number R0 > 0 such that ρ does not vanish
on B(0, R0)c, and a regular positive function ψ which is equal to 0 on B(0, 2R0) and to 1 on
B(0, 3R0)c: with those notations, we calculate the new equation on the whole space

∆2η̆ − 2∆η̆ + c2∂2
1,1η̆ = −∆F̆ − 2c

N∑

j=1

∂1∂jĞj + Φ0, (9)

where we denote

Φ0 = η∆2ψ + 4∇∆ψ.∇η + 4∇∆η.∇ψ + 2∆η∆ψ + 4∇2η.∇2ψ

− 4∇η.∇ψ − 2η∆ψ + c2η∂2
1,1ψ + 2c2∂1ψ∂1η + F∆ψ + 2∇ψ.∇F

+ 2c
N∑

j=1

(Gj∂1∂jψ + ∂1ψ∂jGj + ∂jψ∂1Gj).

(10)

and, for every numerical function f defined on RN ,

f̆ = ψf.

To proceed further, we study the function Φ0 and prove the next lemma.
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Lemma 6. Φ0 is a regular function with a compact support included in the annulus

A = B(0, 3R0) \B(0, 2R0),

which satisfies

Φ0 = −
N∑

j=1

N∑

k=1

∂j∂kPj,k,

where the functions Pj,k given by

∀x ∈ RN , Pj,k(x) = −
∫ 1

0
(1− u)Φ0(

x

u
)u−N−2xjxkdu,

belong to all the spaces Lp(RN ) for 1 ≤ p < N
N−1 .

Proof. By equation (10), Φ0 is a regular function with a compact support included in the annulus

A = B(0, 3R0) \B(0, 2R0).

Thus, its Fourier transformation is also regular and we can write its Taylor formula in 0:

∀ξ ∈ RN , Φ̂0(ξ) = Φ̂0(0) +
N∑

j=1

ξj∂jΦ̂0(0) +
N∑

j=1

N∑

k=1

ξjξk

∫ 1

0
∂j∂kΦ̂0(uξ)(1− u)du. (11)

In order to prove Lemma 6, we begin by proving

Step 1.
Φ̂0(0) = 0.

Indeed, we have for every R ≥ 4R0,

Φ̂0(0) =
∫

RN

Φ0 =
∫

B(0,R)
Φ0.

Therefore, by equation (10) and by some fastidious integrations by parts, we get

Φ̂0(0) =
∫

B(0,R)
ψ(−∆2η + 2∆η − c2∂2

1,1η −∆F − 2c
N∑

j=1

∂1∂jGj)

+
∫

S(0,R)
(∂ν∆η + c2ν1∂1η − 2∂νη + ∂νF + 2c

N∑

j=1

ν1∂jGj)

=
∫

S(0,R)
(∂ν∆η + c2ν1∂1η − 2∂νη + ∂νF + 2c

N∑

j=1

ν1∂jGj).

We then take a positive regular function φR with compact support such that

φR = 1 on B(0, R)

and, ∫

RN

|∇φR| ≤ A,

where A is a real number independant of R.
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In order to construct such a function, we take a regular function

f : R 7→ [0, 1]

such that {
f = 0 on R−

f = 1 on [1,+∞[,

and, we fix some strictly positive real number λ: we then denote

∀x ∈ RN , φR(x) = f

( |x| −R

λR

)
.

This function satisfies all the properties mentionned above and we can compute:
∫

RN

|∇φR(x)|dx ≤ ANλ
N−1R2N−2(λ+ 1)N−1

∫ 1

0
|f ′(u)|du.

Therefore, if we take λ = 1
R2 , the L1-norm of the gradient of φR is bounded independantly of R

for R sufficiently large, and we have constructed such a desired function.

By multiplying it with equation (5), we get

∫

B(0,R)c

φR(∆2η − 2∆η + c2∂2
1,1η + ∆F + 2c

N∑

j=1

∂1∂jGj) =

∫

B(0,R)c

(−∇φR.∇∆η + 2∇φR.∇η −∇φR.∇F − c2∂1φR∂1η − 2c
N∑

j=1

∂1φR∂jGj) + Φ̂0(0),

so, by Holder inequality,

|Φ̂0(0)| ≤ A(‖∇∆η‖L∞(B(0,R)c) + 2‖∇η‖L∞(B(0,R)c) + ‖∇F‖L∞(B(0,R)c)

+ c2‖∂1η‖L∞(B(0,R)c) + 2c
N∑

j=1

‖∂jGj‖L∞(B(0,R)c)).

By Lemma 5, we know that the right term tends to 0 when R tends to infinity and we can
conclude that

Φ̂0(0) = 0.

We also prove

Step 2.
∀1 ≤ j ≤ N, ∂jΦ̂0(0).

We have likewise

∂jΦ̂0(0) = −
∫

RN

ixjΦ0(x)dx = −
∫

B(0,R)
ixjΦ0(x)dx,

11



and, by some fastidious integration by parts,

∂jΦ̂0(0) = −i
∫

B(0,R)
xjψ(−∆2η + 2∆η − c2∂2

1,1η −∆F − 2c
N∑

k=1

∂1∂kGk)

− i

∫

S(0,R)
(2ηνj − 2xj∂νη − Fνj + xj∂νF − c2δj,1ην1 + c2xjν1∂1η + xj∂ν∆η

− ∂j∂νη − 2cδj,1
N∑

k=1

νkGk + 2c
N∑

k=1

∂kGkν1xj)

= −i
∫

S(0,R)
(2ηνj − 2xj∂νη − Fνj + xj∂νF − c2δj,1ην1 + c2xjν1∂1η + xj∂ν∆η

− ∂j∂νη − 2cδj,1
N∑

k=1

νkGk + 2c
N∑

k=1

∂kGkν1xj).

We then also construct a positive regular function φR with compact support such that

φR = 1 on B(0, R),

but, such that ∫

RN

|x||∇φR(x)|dx ≤ A,

where A is a real number independant of R: we can construct such a function by adaptating
the previous construction.

By multiplying the function xjφR with equation (5), we also get

∫

B(0,R)c

xjφR(∆2η − 2∆η + c2∂2
1,1η + ∆F + 2c

N∑

k=1

∂1∂kGk)

=
∫

B(0,R)c

(−xj∇φR.∇∆η + ∂j∇η.∇φR + 2xj∇φR.∇η − 2η∂jφR − c2xj∂1φR∂1η

+ c2δ1,jη∂1φR − xj∇φR.∇F + ∂jφRF − 2c
N∑

k=1

xj∂1φR∂kGk + 2cδj,1
N∑

k=1

∂kφRGk)

− i∂jΦ̂0(0),

and so, by Holder inequality,

|∂jΦ̂0(0)| ≤ A(‖∇∆η‖L∞(B(0,R)c) + ‖∂j∇η‖L∞(B(0,R)c) + 2‖∇η‖L∞(B(0,R)c)

+ 2‖η‖L∞(B(0,R)c) + c2‖∂1η‖L∞(B(0,R)c) + c2‖η‖L∞(B(0,R)c) + ‖∇F‖L∞(B(0,R)c)

+ ‖F‖L∞(B(0,R)c) + 2c
N∑

k=1

(‖∂kGk‖L∞(B(0,R)c) + ‖Gk‖L∞(B(0,R)c))).

By Lemma 5, we also know that the right term tends to 0 when R tends to infinity and we can
conclude that

∂jΦ̂0(0) = 0.

Equation (11) then gives

∀ξ ∈ RN , Φ̂0(ξ) =
N∑

j=1

N∑

k=1

ξjξkP̂j,k(ξ),
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where we denote

P̂j,k(ξ) =
∫ 1

0
∂j∂kΦ̂0(uξ)(1− u)du.

The inverse Fourier transformation leads to

∀x ∈ RN , Pj,k(x) = −
∫ 1

0
(1− u)Φ0(

x

u
)u−N−2xjxkdu,

and, it only remains to prove

Step 3.

∀1 ≤ p <
N

N − 1
, Pj,k ∈ Lp(RN ).

Indeed, we have the estimate

∀x ∈ RN , |Pj,k(x)| ≤ |x|2
∫ 1

0
|Φ0(

x

u
)|u−N−2du ≤ A|x|2

∫ 1

|x|
3R0

u−N−2du ≤ A|x|1−N ,

and, since Pj,k has a compact support included in the ball B(0, 3R0),

∀1 ≤ p <
N

N − 1
, Pj,k ∈ Lp(RN ),

which ends the proof of Lemma 6.

Finally, by equation (9), we get the following proposition:

Proposition 2. The function η̆ satisfies

∆2η̆ − 2∆η̆ + c2∂2
1,1η̆ = −∆F̆ − 2c

N∑

j=1

∂1∂jĞj −
N∑

j=1

N∑

k=1

∂j∂kPj,k. (12)

Now, we are going to write the same equation for the variable ∇θ: by equations (4), we can
write at infinity for every 1 ≤ j ≤ N ,

∆∂jθ =
c

2
∂1∂jη +

N∑

k=1

∂j∂kGk.

Using the same notations as for the variable η, we obtain the equation:

∆∂j θ̆ =
c

2
∂1∂j η̆ +

N∑

k=1

∂j∂kĞk + Φj , (13)

where we denote

Φj = 2∇ψ.∂j∇θ + ∆ψ∂jθ − c

2
η∂j∂1ψ − c

2
∂jψ∂1η

−
N∑

k=1

(Gk∂j∂kψ + ∂jψ∂kGk + ∂kψ∂jGk).
(14)

To proceed further, we also study the function Φj :
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Lemma 7. Φj is a regular function with a compact support included in the annulus

A = B(0, 3R0) \B(0, 2R0),

which satisfies

Φj = −
N∑

k=1

N∑

l=1

∂k∂lQ
j
k,l,

where the functions Qj
k,l given by

∀x ∈ RN , Qj
k,l(x) = −

∫ 1

0
(1− u)Φj(

x

u
)u−N−2xkxldu,

belong to all the spaces Lp(RN ) for 1 ≤ p < N
N−1 .

Proof. This proof is identical to the proof of Lemma 6: the only difference is the use of equations
(6) and (14) instead of equations (5) and (10). So, we omit it.

Finally, by equation (13), we deduce the following proposition:

Proposition 3. For every 1 ≤ j ≤ N , the function ∂j θ̆ satisfies

∆∂j θ̆ =
c

2
∂1∂j η̆ +

N∑

k=1

∂j∂kĞk −
N∑

k=1

N∑

l=1

∂l∂kQ
j
k,l. (15)

In order to study those equations, we transform them in convolution equations:

Theorem 9. The functions η̆ and ∇θ̆ satisfy

η̆ = K0 ∗ F̆ + 2c
N∑

j=1

K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

Kj,k ∗ Pj,k

∂j θ̆ =
c

2
K1,j ∗ F̆ + c2

N∑

k=1

L1,j,k ∗ Ğk +
N∑

k=1

Rj,k ∗ Ğk +
c

2

N∑

k=1

N∑

l=1

Lj,k,l ∗ Pk,l

+
N∑

k=1

N∑

l=1

Rk,l ∗Qj
k,l,

(16)

where K0, Kj,k, Lj,k,l and Rj,k are the kernels of Fourier transformation,

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21

K̂j,k(ξ) =
ξjξk

|ξ|4 + 2|ξ|2 − c2ξ21

L̂j,k,l(ξ) =
ξ1ξjξkξl

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ21)

R̂j,k(ξ) =
ξjξk
|ξ|2 .

(17)

Though those equations look rather involved than the initial ones, they simplify a lot the
study of the regularity and of the decay of v as we will see in the next part.
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1.3 Lp-regularity for 1 < p < 2

In order to complete the proof of Theorem 4, we establish the following proposition.

Proposition 4. ∇v belongs to all the spaces W k,p(RN ) for k ∈ N and 1 < p < 2.

Proof. This proof is adapted from an article of F. Béthuel and J.C. Saut [3] and based on the
study of equations (16). Thus, we begin by studying the Lp-regularity of F and G:

Step 1. F and G belong to all the spaces W k,p(RN ) for k ∈ N and 1 ≤ p ≤ +∞.

At the neighborhood of infinity, we know by Lemma 5 that

1
2
≤ ρ ≤ 3

2
.

Because
|∇v|2 = |∇ρ|2 + ρ2|∇θ|2,

and because Proposition 1 asserts that η and ∇v belong to L2(RN ), F and G are in L1(RN ).
Since Proposition 1 also asserts that η and ∇v belong to L∞(RN ), F and G are in L∞(RN ),
and therefore, in all the spaces Lp(RN ) for 1 ≤ p ≤ +∞.

By iterating this process, we can establish that F and G are in all the spaces W k,p(RN ) for
k ∈ N and 1 ≤ p ≤ +∞.

We then study the Gross-Pitaevskii kernels K0, Kj,k, Lj,k,l and Rj,k:

Step 2. The kernels K0, Kj,k, Lj,k,l and Rj,k are Lp-multipliers for every 1 < p < +∞.

This step follows from Lizorkin theorem [12].

Lizorkin theorem. Let K̂ a regular bounded function on RN \ {0} which satisfies,

N∏

j=1

(ξkj

j )∂k1
1 . . . ∂kN

N K̂(ξ) ∈ L∞(RN )

as soon as (k1, . . . , kN ) ∈ {0, 1}N satisfies

0 ≤
N∑

j=1

kj ≤ N.

Then, K is a Lp-multiplier for every 1 < p < +∞.

The functions K0, Kj,k and Lj,k,l satisfy all the hypothesis of this theorem, and therefore,
are Lp-multipliers for every 1 < p < +∞.

By standard Riesz operator theory, the functions Rj,k are Lp-multipliers too.

By Steps 1 and 2, Lemmas 6 and 7, and Theorem 9, it follows that η and ∇θ belong to
Lp(RN ) for every 1 < p < N

N−1 , and by interpolation, for every 1 < p < 2.

We can then iterate this process for all the derivatives of η and ∇θ: the only technical point
is the use of the function ψ.

For example, for the function ∇η, we do not derivate equation (12), but we derivate the
equation

∆2η − 2∆η + c2∂2
1,1η = −∆F − 2c

N∑

j=1

∂1∂jGj ,
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in order to obtain an equation of the form

∆2(ψ∇η)− 2∆(ψ∇η) + c2∂2
1,1(ψ∇η) = −∆(ψ∇F )− 2c

N∑

j=1

∂1∂j(ψ∇Gj) + Ψ0

where

Ψ0 = −
N∑

j=1

N∑

k=1

∂j∂kSj,k

satisfies analogous properties to Φ0.

By using Proposition 1, we can perform exactly the same proof as for the functions η and
∇θ. Iterating this process, we then conclude that η and ∇θ belong to all the spaces W k,p(RN )
for k ∈ N and 1 < p < +∞. Since η = 1− ρ2, ρ is in all the spaces W k,∞(RN ) for k ∈ N, and,

|∇v|2 = |∇ρ|2 + ρ2|∇θ|2,

Proposition 4 is proved as well as Theorem 4.

Remark 2. In this part, we have also proved that the function η is in all the Lp-spaces for
1 < p ≤ +∞.

2 Linear estimates for the Gross-Pitaevskii kernels

In this part, we study the algebraic decay of the kernels associated to the Gross-Pitaevskii
equation K0, Kj,k, Lj,k,l and Rj,k, ie the exponents α for which the functions |.|αK0, |.|αKj,k,
. . . are bounded on the entire space. In particular, this will characterize all the Lp-spaces to
which those kernels belong.

2.1 Inequality L1-L∞ and general estimates

We first estimate the kernels K0, Kj,k and Lj,k,l by an L1-L∞ argument, essentially summed
up in Lemma 3: these estimates are not optimal and we will see in the next section how to
complete them. However, for sake of completeness, let us start by proving Lemma 3, which is
presummably well-known to the experts.

Lemma 3. The following equality holds

∀x ∈ RN , |x|sf(x) = IN

∫

RN

∫

RN

f̂(z)− f̂(y)
|z − y|N+s

eix.ydydz

for every f ∈ S(RN ), and 0 < s < 1, where we denote

IN = ((2π)N+1

∫ +∞

0
(JN

2
−1(2πu)−

π
N
2
−1

Γ(N
2 )
u

N
2
−1)u−

N
2
−sdu)−1,

JN
2
−1 being the Bessel function defined by

∀u ∈ R, JN
2
−1(u) =

(u
2

)N
2
−1

+∞∑

n=0

(−1)nu2n

4nn!Γ(n+ N
2 )
.
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Proof. We fix x ∈ RN and we get

∫

RN

∫

RN

f̂(z)− f̂(y)
|z − y|N+s

eix.ydydz =
∫

RN

∫

RN

f̂(y + t)− f̂(y)
|t|N+s

eix.ydydt

=
∫

RN

∫

RN

∫

RN

f(σ)ei(x.y−σ.y) e
−it.σ − 1
|t|N+s

dydtdσ.

We then compute ∫

RN

e−it.σ − 1
|t|N+s

dt

by a general formula for the Fourier transformation of radial functions (See for example [15]):

∫

RN

e−it.σ − 1
|t|N+s

dσ = 2π
∫ +∞

0
(JN

2
−1(2πr|σ|)−

π
N
2
−1

Γ(N
2 )

(r|σ|)N
2
−1)r−s−N

2 |σ|1−N
2 dr

= 2π|σ|s
∫ +∞

0
(JN

2
−1(2πu)−

π
N
2
−1

Γ(N
2 )
u

N
2
−1)u−

N
2
−sdu.

So, if we denote

AN = 2π
∫ +∞

0
(JN

2
−1(2πu)−

π
N
2
−1

Γ(N
2 )
u

N
2
−1)u−

N
2
−sdu < 0,

we get

∫

RN

∫

RN

f̂(z)− f̂(y)
|z − y|N+s

eix.ydydz = AN

∫

RN

∫

RN

f(σ)|σ|sei(x.y−σ.y)dσdy

= AN

∫

RN

|̂.|sf(y)eiy.xdy

= (2π)NANf(x)|x|s.

which gives the desired result.

Remark 3. This lemma is not only valid for functions which are in S(RN ), but, by a stan-
dard argument of density, it can be generalized to all the measurable functions whose Fourier
transformation satisfies ∫

RN

∫

RN

|f̂(z)− f̂(y)|
|z − y|N+s

dydz < +∞.

Moreover, in this case, the function |.|sf is not only bounded on RN , but, tends to 0 at infinity:
we will see later that it is an important difference with the second kind of estimates we will
prove.

By Lemma 3, we are now able to prove L∞-estimates about the Gross-Pitaevskii kernels:

Theorem 5. Let N − 2 < α < N , n ∈ N, and (j, k, l) ∈ J1, NK3. The functions dnK0, dnKj,k

and dnLj,k,l belong to M∞
α+n(RN ).

Proof. We first summarize some properties of the functions K0, Kj,k, Lj,k,l and of their deriva-
tives.
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Step 1. Let (n, p) ∈ N2. Denoting f , either the function dpd̂nK0, dpd̂nKj,k or, dpd̂nLj,k,l, f is
a rationnal fraction on RN , whose denominator only vanishes in 0 and such that

|.|p−nf ∈ L∞(B(0, 1)),

and,
|.|p−n+2f ∈ L∞(B(0, 1)c).

This step can be proved by a straightforward recursive argument, based on formulas (17), so
we omit it.

Remark 4. Thanks to this first step, we realize that the behaviour of all those kernels is
identical, and in order to simplify the proof, we will focus on the function dnK0.

We first notice that the functions dN−1+nd̂nK0 belong to L1(RN ), so, by the standard L1-L∞

inequality, the functions |.|N−1+ndnK0 are bounded on the whole space.

In order to prove the other estimates, we then prove:

Step 2. Let s ∈]0, 1[, and n ∈ N. The functions

|.|N−2+s+ndnK0

are bounded on RN .

Indeed, we use Lemma 3 with the function f̂ equal to dN−2+nd̂nK0. Thus, we compute
∫

RN

∫

RN

|f̂(z)− f̂(y)|
|z − y|N+s

dydz =
∫

RN

∫

RN

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

=
∫

RN

∫

|t|≤1

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

+
∫

|t|>1

∫

|y|>2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

+
∫

|t|>1

∫

|y|≤2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt.

For the first integral, we have
∫

RN

∫

|t|≤1

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤
∫ 1

0

∫

RN

∫

|t|≤1

|∇f̂(y + σt)|
|t|N+s−1

dydtdσ

≤
∫

RN

|∇f̂(z)|dz
∫

|t|≤1

dt

|t|N+s−1

≤ A

∫

RN

|dN−1K̂0(ξ)|dξ < +∞

and, for the second one,
∫

|t|>1

∫

|y|>2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤
∫ 1

0

∫

|t|>1

∫

|y|>2|t|

|∇f̂(y + σt)|
|t|N+s−1

dydtdσ

≤ A

∫ 1

0

∫

|t|>1

∫

|y|>2|t|

dt

|t|N+s−1

dydσ

|y + σt|N+1

≤ A

∫

|t|>1

∫

|y|>2|t|

dt

|t|N+s−1

dy

(|y| − |t|)N+1

≤ A

∫

|t|>1

dt

|t|N+s

∫

|u|>2

du

(|u| − 1)N+1
< +∞
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and, for the last one,
∫

|t|>1

∫

|y|≤2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤ 2
∫

|t|>1

dt

|t|N+s

∫

|y|≤3|t|
|f̂(y)|dy

≤ A

∫

|t|>1

dt

|t|N+s

(∫

|y|≤1

dy

|y|N−2
+

∫

1<|y|≤3|t|

dy

|y|N
)

≤ A

∫

|t|>1

∫

|y|≤1

dt

|t|N+s

dy

|y|N−2
+A

∫

|t|>1

ln(3|t|)
|t|N+s

dt

< +∞.

Thus, we can conclude that
∫

RN

∫

RN

|f̂(z)− f̂(y)|
|z − y|N+s

dydz < +∞,

and, by Lemma 3, |.|N−2+s+ndnK0 is bounded on RN for every 0 < s < 1.

We finally complete this proof by the next similar step.

Step 3. Let s ∈]0, 1[, and n ∈ N. The functions

|.|N−1+s+ndnK0

are bounded on RN .

For this step, we also use Lemma 3, but, for the function

f̂ = dN−1+nd̂nK0.

Likewise, we get
∫

RN

∫

RN

|f̂(z)− f̂(y)|
|z − y|N+s

dydz =
∫

RN

∫

RN

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

=
∫

RN

∫

|t|≥1

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

+
∫

|t|<1

∫

|y|≤2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt

+
∫

|t|<1

∫

|y|>2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt.

For the first integral, we have similarly
∫

RN

∫

|t|≥1

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤ 2
∫

RN

|f̂(z)|dz
∫

|t|≥1

dt

|t|N+s

≤
∫

RN

|dN−1K̂0(z)|dz
∫

|t|≥1

dt

|t|N+s
< +∞

for the second one,
∫

|t|<1

∫

|y|≤2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤ 2
∫

|t|<1

∫

|y|≤3|t|
|f̂(y)|dy dt

|t|N+s

≤ A

∫

|t|<1

∫

|y|≤3|t|

dt

|t|N+s

dy

|y|N−1

≤ A

∫

|t|<1

∫

|u|≤3

dt

|t|N+s−1

du

|u|N−1
< +∞
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and, for the last one,
∫

|t|<1

∫

|y|>2|t|

|f̂(y + t)− f̂(y)|
|t|N+s

dydt ≤
∫ 1

0

∫

|t|<1

∫

|y|>2|t|

dt

|t|N+s−1
|∇f̂(y + σt)|dydσ

≤ A

∫

|t|<1

dt

|t|N+s−1
(
∫

2>|y|>2|t|

dy

(|y| − |t|)N

+
∫

|y|>2

dy

(|y| − |t|)N+2
)

≤ A

∫

|t|<1

dt

|t|N+s−1

∫ 2
|t|

2

uN−1

(u− 1)N
du

+A

∫

|t|<1

dt

|t|N+s−1

∫

|y|>2

dy

(|y| − 1)N+2

≤ A

∫

|t|<1

| ln(t)|dt
|t|N+s−1

+A

∫

|t|<1

dt

|t|N+s−1

∫

|y|>2

dy

(|y| − 1)N+2

< +∞.

Thus, we can also conclude that
∫

RN

∫

RN

|f̂(z)− f̂(y)|
|z − y|N+s

dydz < +∞,

and that, by Lemma 3, |.|N+s−1+ndnK0 is bounded on RN for every 0 < s < 1, which completes
the proofs of this last step and of Theorem 5.

Remark 5. The key ingredient of those proofs is the form of the kernels Fourier transformation
K̂:

• K̂ is a rationnal fraction.

• K̂ is only singular at the origin, where the singularity is of the form O
ξ→0

( 1
|ξ|α ).

• At infinity, K̂ is of the form O
|ξ|→+∞

( 1
|ξ|β ), where β > α.

Thus, we can perform the same proof for all the kernels whose Fourier transformation satisfies
such assumptions in order to get their algebraic decay.

Before improving those first estimates, we can prove the next corollary which will not be
improved in the following:

Corollary 2. Let (j, k, l) ∈ J1, NK3. The functions K0, Kj,k and Lj,k,l belong to all the spaces
Lp(RN ) for

1 < p <
N

N − 2
,

and their gradient to all the spaces Lp(RN ) for

1 ≤ p <
N

N − 1
.

Proof. This follows from the estimates of Theorem 5.
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2.2 Critical estimates

Actually, we can improve Theorem 5 by proving:

Theorem 6. Let n ∈ N, and (j, k, l) ∈ J1, NK3. The functions dnK0, dnKj,k and dnLj,k,l belong
to M∞

N+n(RN ).

This theorem seems very similar to Theorem 5, but its proof is quite different: in this case,
we conjecture that the functions |.|N+ndnK0, |.|N+ndnKj,k and |.|N+ndnLj,k,l are bounded on
RN , but does not tend to 0 at infinity. We cannot hope to prove it from a general inequality
deduced by using the density of regular functions, because it will mean that those functions tend
to 0 at infinity.

Moreover, those estimates are supposed to be critical, because we also conjecture that the
functions |.|α+ndnK0, |.|α+ndnKj,k and |.|α+ndnLj,k,l are not bounded on RN for α > N .

Proof. This proof relies on the following lemma:

Lemma 8. Let 1 ≤ j ≤ N . The function

x 7→ xjf(x)

is bounded on B(0, 1)c for every f ∈ S′(RN ) such that f̂ is a regular function on RN \ {0} and

(i) (|.|N+1 + |.|N−1)f̂ is bounded on RN .

(ii) (|.|N+2 + |.|N )∂j f̂ is bounded on RN .

(iii) (|.|N+3 + |.|N+1)∂j∂kf̂ are bounded on RN for every 1 ≤ k ≤ N .

Indeed, we begin by showing the next general formula:

Step 1. Let λ > 0. The following equality holds almost everywhere

xjf(x) =(2π)−N i(
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ

+
∫

S(0,λ)
ξj f̂(ξ)eix.ξdξ).

(18)

Let take g ∈ S(RN ). We have

< xjf, ĝ >=< f, xj ĝ >= −i < f, ∂̂jg >= −i < f̂ , ∂jg > .

Since f̂ is in L1(RN ), we can write

< xjf, ĝ >= −i
∫

RN

f̂(ξ)∂jg(ξ)dξ,

and, by integrating by parts, we deduce

< xjf, ĝ >= −i < f̂ , ∂jg > = i

∫

B(0,λ)c

∂j f̂(ξ)g(ξ)dξ + i

∫

B(0,λ)
∂j f̂(ξ)(g(ξ)− g(0))dξ

+ ig(0)
∫

S(0,λ)
ξj f̂(ξ)dξ.
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Since g is in S(RN ), we can write

g(ξ) = (2π)−N

∫

RN

ĝ(x)eix.ξdx,

and get

< xjf, ĝ > = (2π)−N i

∫

RN

ĝ(x)(
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ

+
∫

S(0,λ)
ξj f̂(ξ)dξ)dx.

As the function

x 7→
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ +

∫

S(0,λ)
ξj f̂(ξ)dξ

belongs to L1
loc(RN ), by standard duality, we conclude that formula (18) is valid almost every-

where.

To proceed further, we evaluate each integral which appears in formula (18).

Step 2. The following inequalities hold for every x ∈ RN and λ > 0
{
| ∫B(0,λ) ∂j f̂(ξ)(eix.ξ − 1)dξ| ≤ Aλ|x|

| ∫S(0,λ) ξj f̂(ξ)eix.ξdξ| ≤ Aλ,

where A is a real number independant of x and λ.

Indeed, on one hand, we know that

∀u ∈ R, |eiu − 1| ≤ A|u|,

and therefore,

|
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ| ≤ A|x|

∫

B(0,λ)
|∂j f̂(ξ)||ξ|dξ.

By assumption (ii), we get

|
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ| ≤ A|x|

∫

B(0,λ)

dξ

|ξ|N−1
≤ Aλ|x|.

On the other hand, we deduce by assumption (i),

|
∫

S(0,λ)
ξj f̂(ξ)eix.ξdξ| ≤ A

∫

S(0,λ)

dξ

|ξ|N−2
≤ Aλ.

It remains only a single integral to evaluate:

Step 3. The following inequality holds for every x ∈ B(0, 1)c and 0 < λ < 1

|
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ| ≤ A(1 +
1
λ|x|),

where A is a real number independant of x and λ.

22



Indeed, we have
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ =
∫

B(0,1)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,1)\B(0,λ)
∂j f̂(ξ)eix.ξdξ.

For the first integral, by assumption (ii), we deduce

|
∫

B(0,1)c

∂j f̂(ξ)eix.ξdξ| ≤
∫

B(0,1)c

|∂j f̂(ξ)|dξ ≤ A.

For the second one, since |x| > 1, there is some 1 ≤ k ≤ N such that

|xk| ≥ |x|
N
.

By integrating by parts this integral, we then get
∫

B(0,1)\B(0,λ)
∂j f̂(ξ)eix.ξdξ =

1
ixk

∫

B(0,1)\B(0,λ)
∂j f̂(ξ)∂k(eix.ξ)dξ

=
1
ixk

(−
∫

B(0,1)\B(0,λ)
∂j∂kf̂(ξ)eix.ξdξ

+
∫

S(0,1)
∂j f̂(ξ)eix.ξξkdξ

−
∫

S(0,λ)
∂j f̂(ξ)eix.ξξkdξ),

and, by assumptions (ii) and (iii),

|
∫

B(0,1)\B(0,λ)
∂j f̂(ξ)eix.ξdξ| ≤ N

|x|(A
∫

B(0,1)\B(0,λ)

dξ

|ξ|N+1
+A+A

∫

S(0,λ)

dξ

|ξ|N−1
)

≤ A

λ|x| +A.

Finally, we get

|
∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ| ≤ A(1 +
1
λ|x|) ≤

A

λ|x| +A,

which is the desired result.

By Steps 1, 2 and 3, we finally get for every x ∈ B(0, 1)c and 0 < λ < 1,

|xjf(x)| ≤ Aλ|x|+Aλ+
A

λ|x| +A.

By choosing

λ =
1
|x| ,

we conclude the proof of Lemma 8.

In order to complete the proof of Theorem 6, we notice by the first step of the proof of
Theorem 5 that the functions dN−1+nd̂nK0, dN−1+nd̂nKj,k and dN−1+nd̂nLj,k,l satisfy the three
assumptions of Lemma 8. Thus, by an immediate application of this lemma, we get the results
of Theorem 6.
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2.3 Estimates for the composed Riesz kernels

We focus next on the kernels Rj,k: as they are very simple, we know their exact expression.
Thus, if f is a regular function, and if we denote gj,k, the function defined by

∀ξ ∈ RN , ĝj,k(ξ) = R̂j,k(ξ)f̂(ξ),

we can write the exact formula

∀x ∈ RN , gj,k(x) = AN

∫

|y|>1

δj,k|y|2 −Nyjyk

|y|N+2
f(x− y)dy

+AN

∫

|y|≤1

δj,k|y|2 −Nyjyk

|y|N+2
(f(x− y)− f(x))dy.

Therefore, we do not have to study the decay of the kernels Rj,k directly, and instead, we may
restrict ourselves to the decay of the functions gj,k with suitable assumptions on f . In that
context, we recall some useful facts, which are presummably well-known to the experts. For
sake of completeness, we also mention the proofs.

Proposition 5. Let f be a regular function which belongs to Lp(RN ) for every p ∈]1,+∞], and,
suppose that there is

δ ∈]0, N ]

such that for every β ∈ [0, δ[, { |.|βf ∈ L∞(RN )
|.|β∇f ∈ L∞(RN ).

Then, the functions
|.|βgj,k ∈ L∞(RN )

for every (j, k) ∈ J1, NK2 and for every β ∈ [0, δ[.

Proof. We first denote

gj,k(x) = AN

∫

|y|>1

δj,k|y|2 −Nyjyk

|y|N+2
f(x− y)dy

+AN

∫

|y|≤1

δj,k|y|2 −Nyjyk

|y|N+2
(f(x− y)− f(x))dy

= I1(x) + I2(x).

Therefore, if we fix β ∈ [0, δ[, we get

|x|β|I1(x)| ≤ A

∫

|y|>1
|x− y|β|f(x− y)| dy|y|N +A

∫

|y|>1
|f(x− y)| dy

|y|N−β
.

Hence, if p is sufficiently large, we have

∫

|y|>1
|f(x− y)| dy

|y|N−β
≤ ||f ||Lp′ (RN )

(∫

|y|>1

dy

|y|p(N−β)

) 1
p

< +∞,
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and, if β < δ − ε and |x| > 4, then
∫

|y|>1
|x− y|β|f(x− y)| dy|y|N ≤ A

∫

|y|>1

dy

|y|N |x− y|ε

≤ A

|x|ε
∫

|t|> 1
|x|

dt

|t|N | x
|x| − t|ε

≤ A

|x|ε
∫

1
|x|<|t|< 1

2

dt

|t|N +
A

|x|ε
∫

1
2
<|t|< 3

2

dt

| x
|x| − t|ε

+
A

|x|ε
∫

|t|> 3
2

dt

|t|N (|t| − 1)ε

≤ A ln |x|
|x|ε +A+

A

|x|ε
∫

|t− x
|x| |< 1

2

dt

| x
|x| − t|ε

≤ A ln |x|
|x|ε +A < +∞,

and, if |x| ≤ 4, we get
∫

|y|>1
|x− y|β|f(x− y)| dy|y|N ≤ A

∫

1<|y|<5

dy

|y|N +A

∫

|y|>5

dy

|y|N (|y| − 4)ε
< +∞.

Thus, the function |.|βI1 is bounded on RN , and likewise, we have for the function I2:

|x|βI2(x) ≤ A

∫

|y|≤1
|x− y|β|f(x− y)− f(x)| dy|y|N +A

∫

|y|≤1
|f(x− y)− f(x)| dy

|y|N−β
.

On one hand, if β < δ − ε, we have
∫

|y|≤1
|x− y|β|f(x− y)− f(x)| dy|y|N ≤ ||∇f ||L∞(B(x,1))(|x|+ 1)β

∫

|y|≤1

dy

|y|N−1

≤ A

(1 + |x|)ε
< +∞

and, on the other hand, we have if β = 0
∫

|y|≤1
|f(x− y)− f(x)| dy|y|N ≤ A

∫

|y|≤1

dy

|y|N−1
< +∞

and, if β > 0, we get
∫

|y|≤1
|f(x− y)− f(x)| dy

|y|N−β
≤ A

∫

|y|≤1

dy

|y|N−β
.

Therefore, the function |.|βI2 is also bounded on RN , such as the function |.|βgj,k.

Remark 6. In fact, we can prove a similar proposition for the Riesz kernels.

Actually, we will also make use of the next more precise proposition in the critical case, which
is also presummably well-known to the experts. For sake of completeness, we also mention the
proofs.
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Proposition 6. Let f be a regular function which belongs to L1(RN ), and, suppose that
{

(1 + |.|N )f ∈ L∞(RN )
(1 + |.|N+1)∇f ∈ L∞(RN ).

Then, the functions
|.|Ngj,k ∈ L∞(RN )

for every (j, k) ∈ J1, NK2.

Proof. We notice that we have

gj,k(x) = AN

∫

|y|> |x|
4

,|x−y|> |x|
4

δj,k|y|2 −Nyjyk

|y|N+2
f(x− y)dy

+AN

∫

|x−y|≤ |x|
4

δj,k|y|2 −Nyjyk

|y|N+2
f(x− y)dy

+AN

∫

|y|≤ |x|
4

δj,k|y|2 −Nyjyk

|y|N+2
(f(x− y)− f(x))dy

= I1(x) + I2(x) + I3(x).

For the first integral, we have

|I1(x)| ≤ AN

∫

|y|> |x|
4

,|x−y|> |x|
4

dy

|y|N |x− y|N

≤ AN

|x|N
∫

|z|> 1
4
,| x
|x|−z|> 1

4

dz

|z|N | x
|x| − z|N

≤ AN

|x|N
∫

|z|> 1
4
,|e1−z|> 1

4

dz

|z|N |e1 − z|N

≤ AN

|x|N ,

for the second one,

|I2(x)| ≤ AN

|x|N
∫

|x−y|≤ |x|
4

|f(x− y)|dy

≤ AN

|x|N
∫

|z|< |x|
4

|f(t)|dt

≤ AN

|x|N ,

and, for the last one,

|I3(x)| ≤ AN

∫

|y|≤ |x|
4

|y|1−N |x|−N−1dy

≤ AN

|x|N .

Finally, the function |.|Ngj,k is bounded on RN .
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3 Decay at infinity

In this part, we study the algebraic decay of the functions η and ∇θ, and of some of their
derivatives, by the method yet explained in the introduction, which was introduced by J.L.
Bona and Yi A. Li [6], and A. de Bouard and J.C. Saut [8], and relies on the transformation of
a PDE in a convolution equation (See also [14, 13] for many more details).

3.1 A refined energy estimate

We first give an energy estimate for v by arguments from F. Béthuel, G. Orlandi and D. Smets
[2].

Proposition 7. There is some real number α > 0 such that the integral
∫

RN

|x|βe(v)(x)dx

is finite for every 0 ≤ β < α.

Proof. This proof relies on the following lemma proved by F. Béthuel, G. Orlandi and D. Smets
[2].

Lemma 4. The function

R→ Rαc

∫

B(0,R)c

e(v)

is bounded on R+ for some real number αc > 0.

In order to prove this lemma, by Lemma 5, we will choose R so large that ρ does not vanish
on B(0, R)c.

We already know that ρ and θ satisfy both the equations
{

div(ρ2∇θ) = − c
2∂1ρ

2

−∆ρ+ ρ|∇θ|2 + cρ∂1θ = ρ(1− ρ2)
(4)

on the domain B(0, R)c.

Thus, we take λ > R and denote Ω = B(0, λ) \ B(0, R), and, θR = 1
|SR|

∫
SR
θ. We begin by

multiplying the first equation by ρ2 − 1, which gives by integrating by parts,

2
∫

Ω
ρ|∇ρ|2 −

∫

Sλ

∂νρ(ρ2 − 1) +
∫

SR

∂νρ(ρ2 − 1)

+
∫

Ω
ρ(ρ2 − 1)|∇θ|2 + c

∫

Ω
ρ(ρ2 − 1)∂1θ =

∫

Ω
ρ(ρ2 − 1)2.

We then know that ∂νρ(ρ2− 1) belongs to L1(RN ), so, we can construct an increasing sequence
(λn)n∈N which diverges to +∞, and such that

∫
Sλn

∂νρ(ρ2 − 1) tends to 0: by taking the limit
at infinity in the previous equality, we get

2
∫

B(0,R)c

ρ|∇ρ|2 +
∫

SR

∂νρ(ρ2 − 1) +
∫

B(0,R)c

ρ(ρ2 − 1)|∇θ|2

+ c

∫

B(0,R)c

ρ(ρ2 − 1)∂1θ =
∫

B(0,R)c

ρ(ρ2 − 1)2.
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We also get such a result by multiplying the second equation by θ − θR, and, by integrating by
parts,

∫

Ω
ρ2|∇θ|2 −

∫

Sλ

ρ2∂νθ(θ − θR) +
∫

SR

ρ2∂νθ(θ − θR)

= − c
2

∫

Ω
(ρ2 − 1)∂1θ +

c

2

∫

Sλ

(ρ2 − 1)ν1(θ − θR)− c

2

∫

SR

(ρ2 − 1)ν1(θ − θR).

By Theorem 4, we know that ∇θ and 1− ρ2 belong to L
N

N−1 (RN ). Since
{

| ∫Sλ
ρ2∂νθ(θ − θR)| ≤ A

∫
Sλ
|∂νθ| ≤ A(λ

∫
Sλ
|∂νθ|

N
N−1 )

N−1
N

| ∫Sλ
(ρ2 − 1)ν1(θ − θR)| ≤ A

∫
Sλ
|1− ρ2| ≤ A(λ

∫
Sλ
|1− ρ2| N

N−1 )
N−1

N ,

we can also construct an increasing sequence (λn)n∈N which diverges to +∞, and such that

λn

∫

Sλn

(|∇θ| N
N−1 + |1− ρ2| N

N−1 ) →
n→∞ 0,

and get
∫

B(0,R)c

ρ2|∇θ|2 +
∫

SR

ρ2∂νθ(θ − θR) = − c
2

∫

B(0,R)c

(ρ2 − 1)∂1θ − c

2

∫

SR

(ρ2 − 1)ν1(θ − θR).

By adding the previous equality, it gives
∫

B(0,R)c

e(v) =− c

2

∫

B(0,R)c

ρ(ρ2 − 1)∂1θ − 1
2

∫

SR

ρ2∂νθ(θ − θR)

− c

4

∫

SR

(θ − θR)(ρ2 − 1)ν1 +
∫

B(0,R)c

(1− ρ)(
|∇ρ|2

2
+

(1− ρ2)2

4
)

− c

4

∫

B(0,R)c

(1− ρ)(ρ2 − 1)∂1θ − 1
4

∫

SR

∂νρ(ρ2 − 1)

+
1
4

∫

B(0,R)c

ρ(1− ρ2)|∇θ|2.

It remains to evaluate each term in the right member of this equality. For the first one, we can
write

| c
2

∫

B(0,R)c

ρ(ρ2 − 1)∂1θ| ≤ c√
2

∫

B(0,R)c

(
ρ2∂1θ

2

2
+

(1− ρ2)2

4
) ≤ c√

2

∫

B(0,R)c

e(v).

For the next one, we get by Sobolev-Poincaré inequality,

|1
2

∫

SR

ρ2∂νθ(θ − θR)| ≤ A

(∫

SR

ρ2∂νθ2

) 1
2
(∫

SR

(θ − θR)2
) 1

2

≤ AR

(∫

SR

ρ2∂νθ2

) 1
2
(∫

SR

∂νθ
2

) 1
2

≤ AR

∫

SR

e(v),

and, likewise, {
| c4

∫
SR

(θ − θR)(ρ2 − 1)| ≤ AR
∫
SR
e(v)

| ∫SR
∂νρ(ρ2 − 1)| ≤ A

∫
SR
e(v).
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In order to estimate the other terms, we fix ε > 0 and choose by Lemma 5, R sufficiently large
such as |ρ− 1| and |∇θ| are less than ε on the domain B(0, R)c. For such an R, we have





| ∫B(0,R)c(1− ρ)( |∇ρ|2
2 + (1−ρ2)2

4 )| ≤ ε
∫
B(0,R)c e(v)

| c4
∫
B(0,R)c(1− ρ)(ρ2 − 1)∂1θ| ≤ Aε

∫
B(0,R)c e(v)

|14
∫
B(0,R)c ρ(1− ρ2)|∇θ|2| ≤ Aε

∫
B(0,R)c e(v)

which finally gives,
∫

B(0,R)c

e(v) ≤ (
c√
2

+Aε)
∫

B(0,R)c

e(v) +AR

∫

SR

e(v).

Thus, if ε is sufficiently small such as

c√
2

+Aε < 1,

we have ∫

B(0,R)c

e(v) ≤ Ac

∫

SR

e(v).

Denoting J(R) =
∫
B(0,R)c e(v), we have for R sufficiently large

J(R) ≤ −AcRJ
′(R)

which gives

J(R) ≤ B

R
1

Ac

.

Thus, Lemma 4 is proved with αc = 1
Ac

.

Now, we can conclude the proof of Proposition 7: we choose β ∈ [0, αc[ and we compute
∫

RN

|x|βe(v)(x)dx =
∫ +∞

0
rβ

∫

Sr

e(v)dr

= −[rβ

∫ +∞

r

∫

Sρ

e(v)dρ]+∞0 + β

∫ +∞

0
rβ−1(

∫ +∞

r

∫

Sρ

e(v)dρ)dr

= β

∫ +∞

0
rβ−1(

∫ +∞

r

∫

Sρ

e(v)dρ)dr < +∞.

Remark 7. We will see in the following that this proposition is not optimal but is essential to
begin the argument of the next section.

3.2 Decay of the functions η, ∇η and ∇θ

In order to estimate this decay, we prove the following theorem

Theorem 7. The functions η, ∇η and ∇θ are in M∞
N (RN ), M∞

N+1(RN ) and M∞
N (RN ) respec-

tively.
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Proof. By Theorem 4, we first notice that the functions η, ∇η and ∇θ are bounded on RN .
Thus, we only have to prove that the functions |.|Nη, |.|N+1∇η and |.|N∇θ are bounded at
infinity, and more simply, that the functions |.|N η̆, |.|N+1∇η̆ and |.|N∇θ̆ are bounded at infinity.

This remark done, by Proposition 7, we already know that there is a strictly positive constant
α such that ∫

RN

|x|βe(v)(x)dx

is finite for every 0 ≤ β < α. Using this result, we are going to show this first proposition.

Proposition 8. There is some real number α > 0 such that

(η̆,∇η̆,∇θ̆) ∈M∞
β (RN )3

for every 0 ≤ β < α.

The proof of this step relies on equations (16) of Theorem 9

η̆ = K0 ∗ F̆ + 2c
N∑

j=1

K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

Kj,k ∗ Pj,k,

∂j θ̆ =
c

2
K1,j ∗ F̆ + c2

N∑

k=1

L1,j,k ∗ Ğk +
N∑

k=1

Rj,k ∗ Ğk +
c

2

N∑

k=1

N∑

l=1

Lj,k,l ∗ Pk,l

+
N∑

k=1

N∑

l=1

Rk,l ∗Qj
k,l.

We are going to study each term of those equations beginning by

Step 1. Let j ∈ J1, NK. Then,

(1.1) K0 ∗ F̆ ∈M∞
β (RN )

(1.2) K1,j ∗ Ğj ∈M∞
β (RN )

for every β sufficiently small.

Indeed, we have for every β > 0, and every x ∈ RN ,

|x|β|K0 ∗ F̆ (x)| ≤ A(
∫

RN

|x− y|β|K0(x− y)||F̆ (y)|dy +
∫

RN

|K0(x− y)||y|β|F̆ (y)|dy).

On one hand, by Theorem 6, we know that for every β ∈ [0, N [, there is some real number
p ∈ [1,+∞] such that

|.|βK0 ∈ Lp(RN ),

and, since by Theorem 4, F̆ is in Lp′(RN ), we get by Young’s inequality,

‖(|.|βK0) ∗ F̆‖L∞(RN ) ≤ ‖K0‖Mp
β (RN )‖F̆‖Lp′ (RN ) < +∞,

where we denote

‖K0‖Mp
β (RN ) =

(∫

RN

|K0(y)|p|y|pβdy

) 1
p

.
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On the other hand, by Proposition 7, we notice that there is some real number α > 0 such that

∀β ∈ [0, α[,
∫

RN

|.|β(|F̆ |+ |Ğ|) < +∞.

Since by Corollary 2, we have
K0 ∈ Lq(RN )

for every 1 < q < N
N−2 , we get for every β ∈ [0, 2α

N [,

‖K0 ∗ (|.|βF̆ )‖L∞(RN ) ≤ ‖K0‖Lq(RN )‖F̆‖Mq′
β (RN )

.

As there is 1 < q < N
N−2 such that

βq′ < α,

and, by Lemma 5, F̆ tends to 0 at infinity, we are led to
∫

RN

|.|βq′ |F̆ |q′ ≤ A

∫

RN

|.|βq′ |F̆ | < +∞,

and, the function K0 ∗(|.|βF̆ ) is bounded on RN , such as the function |.|βK0 ∗ F̆ : the proof being
identical for the functions |.|βK1,j ∗ Ğj by replacing F by Gj , we omit it.

We now study the last term of the first equation:

Step 2. Let (j, k) ∈ J1, NK2, and with the notations of the first part, R = 4R0. Then,

(1.3) Kj,k ∗ Pj,k ∈M∞
N (B(0, R)c).

Indeed, by Lemma 6, we have

∀x ∈ B(0, R)c,Kj,k ∗ Pj,k(x) =
∫

B(0,3R0)
Kj,k(x− y)Pj,k(y)dy,

and so, by Theorem 6,

|Kj,k ∗ Pj,k(x)| ≤ A

∫

B(0,3R0)
|x− y|−N |Pj,k(y)|dy ≤ A

|x|N ‖Pj,k‖L1(RN ),

which completes the proof of this step.

The result of Proposition 8 concerning the function η̆ follows from combining Steps 1 and 2,
and Theorem 4.

In order to prove the remaining results, we first study the function ∇η̆ which satisfies the
equation

∇η̆ = ∇K0 ∗ F̆ + 2c
N∑

j=1

∇K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

∇Kj,k ∗ Pj,k, (19)

and establish results similar to the previous steps,

Step 3. Let (j, k) ∈ J1, NK2, and with the notations of the first part, R = 4R0. Then,

(1.4) ∇K0 ∗ F̆ ∈M∞
β (RN )

(1.5) ∇K1,j ∗ Ğj ∈M∞
β (RN )

(1.6) ∇Kj,k ∗ Pj,k ∈M∞
N+1(B(0, R)c)
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for every real number β sufficiently small.

Indeed, for (1.4), we have for every β > 0, and, every x ∈ RN ,

|x|β|∇K0 ∗ F̆ (x)| ≤ A(
∫

RN

|x− y|β|∇K0(x− y)||F̆ (y)|dy +
∫

RN

|∇K0(x− y)||y|β|F̆ (y)|dy).

On one hand, we deduce from Theorem 6 that for every β ∈ [0, N + 1[,

‖(|.|β∇K0) ∗ F̆‖L∞(RN ) ≤ ‖∇K0‖Mp
β (RN )‖F̆‖Lp′ (RN ) < +∞,

where p is chosen such that |.|β∇K0 belongs to Lp(RN ).

On the other hand, by Corollary 2, for every q ∈ [1, N
N−1 [ and every β ∈ [0, α

N [,

‖∇K0 ∗ (|.|βF̆ )‖L∞(RN ) ≤ ‖∇K0‖Lq(RN )‖F̆‖Mq′
β (RN )

and, since there is q ∈ [1, N
N−1 [ such that βq′ < α,

∫

RN

|.|βq′ |F̆ |q′ ≤ A

∫

RN

| |βq′ |F̆ | < +∞,

and, the function ∇K0 ∗ (|.|βF̆ ) is bounded on RN , such as the function |.|β∇K0 ∗ F̆ : similarly,
the functions |.|β∇K1,j ∗ Ğj are bounded as soon as β is sufficiently small.

And, likewise for (1.6), we have the formula

∀x ∈ B(0, R)c,∇Kj,k ∗ Pj,k(x) =
∫

B(0,3R0)
∇Kj,k(x− y)Pj,k(y)dy,

and so, by Theorem 6,

|∇Kj,k ∗ Pj,k(x)| ≤ A

∫

B(0,3R0)
|x− y|−N−1|Pj,k(y)|dy ≤ A

|x|N+1
‖Pj,k‖L1(RN ).

Therefore, the function |.|N+1∇Kj,k ∗ Pj,k is bounded at infinity, which ends the proof of this
step, and shows that the results of Proposition 8 for the function ∇η̆ are valid.

It only remains to study the function ∇θ̆ thanks to equations (16)

∂j θ̆ =
c

2
K1,j ∗ F̆ + c2

N∑

k=1

L1,j,k ∗ Ğk +
N∑

k=1

Rj,k ∗ Ğk +
c

2

N∑

k=1

N∑

l=1

Lj,k,l ∗ Pk,l

+
N∑

k=1

N∑

l=1

Rk,l ∗Qj
k,l.

The study of the terms involving the kernels K1,j , L1,j,k and Lj,k,l is strictly identical to those
of Steps 1, 2 and 3, and leads to

Step 4. Let (j, k, l) ∈ J1, NK3, and with the notations of the first part, R = 4R0. Then,

(1.7) K1,j ∗ F̆ ∈M∞
β (RN )

(1.8) L1,j,k ∗ Ğk ∈M∞
β (RN )

(1.9) Lj,k,l ∗ Pk,l ∈M∞
N (B(0, R)c)
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for every real number β sufficiently small.

It remains to evaluate the functions Rj,k ∗ Ğk and Rk,l ∗Qj
k,l: for the first one, we prove

Step 5. Let (j, k) ∈ J1, NK2. We have

(1.10) Rj,k ∗ Ğk ∈M∞
β (RN ),

for every real number β sufficiently small.

Indeed, by the previous steps of this proof, the functions |.|β η̆ and |.|β∇η̆ are bounded on
RN for β sufficiently small: so, the functions |.|βĞ and |.|β∇Ğ are also bounded on RN for β
sufficiently small. Since the functions G and ∇G belong to all the spaces Lp(RN ), by Proposition
5, we can conclude that the functions |.|βRj,k ∗ Ğk are bounded for β sufficiently small.

For the second one, we show

Step 6. Let (j, k, l) ∈ J1, NK3, and with the notations of the first part, R = 4R0. Then,

(1.11) Rk,l ∗Qj
k,l ∈M∞

N (B(0, R)c).

By Lemma 7, we have likewise

∀x ∈ B(0, R)c, Rk,l ∗Qj
k,l(x) = AN

∫

B(0,3R0)

δk,l|x− y|2 −N(xk − yk)(xl − yl)
|x− y|N+2

Qj
k,l(y)dy,

and so,

|Rk,l ∗Qj
k,l(x)| ≤ A

∫

B(0,3R0)
|x− y|−N |Qj

k,l(y)|dy ≤
A

|x|N ‖Q
j
k,l‖L1(RN ).

Therefore, the function |.|NRk,l ∗ Qj
k,l is bounded at infinity, which concludes the proof of this

step and of Proposition 8.

The proof of Theorem 7 now relies on the following iterative argument.

Proposition 9. We suppose that there is some real number α > 0 such that

(η̆,∇η̆,∇θ̆) ∈M∞
β (RN )3,

for every β ∈ [0, α[. Then,
(η̆,∇θ̆) ∈M∞

β (RN )2,

for every
β ∈ [0,min{N, 2α}[,

and,
∇η̆ ∈M∞

β (RN ),

for every
β ∈ [0,min{N + 1, 2α}[.

This proof is very similar to the previous one: we begin by using the quadratic form of the
functions F and G.

Step 7. The function
|.|β(|F̆ |+ |Ğ|)

is bounded for every
β ∈ [0, 2α[.
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This step is clear, but as we will see soon, it is the key ingredient of the iterative argument.

Thanks to it and to equation (16),

η̆ = K0 ∗ F̆ + 2c
N∑

j=1

K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

Kj,k ∗ Pj,k,

we begin by studying the function η̆:

Step 8. For every β ∈ [0,min{N, 2α}[, we have

(1.12) K0 ∗ F̆ ∈M∞
β (RN )

(1.13) K1,j ∗ Ğj ∈M∞
β (RN ).

We have likewise for any β > 0, and any x ∈ RN ,

|x|β|K0 ∗ F̆ (x)| ≤ A(
∫

RN

|x− y|β|K0(x− y)||F̆ (y)|dy +
∫

RN

|K0(x− y)||y|β|F̆ (y)|dy).

On one hand, by Theorem 5, we know that for every β ∈ [0, N [, there is some real number
p ∈ [1,+∞] such that

|.|βK0 ∈ Lp(RN ),

which gives by Theorem 4

‖(|.|βK0) ∗ F̆‖L∞(RN ) ≤ ‖K0‖Mp
β (RN )‖F̆‖Lp′ (RN ) < +∞.

On the other hand, by Corollary 2,
K0 ∈ Lq(RN )

for every 1 < q < N
N−2 : so, we get for every β ∈ [0, 2α[,

‖K0 ∗ (|.|βF̆ )‖L∞(RN ) ≤ ‖K0‖Lq(RN )‖F̆‖Mq′
β (RN )

.

As there is some real number 1 < q < N
N−2 such that

∫

RN

|.|βq′ |F̆ |q′ < +∞,

the function K0 ∗ (|.|βF̆ ) is bounded on RN , such as the function |.|βK0 ∗ F̆ : the proof being
identical for the functions |.|βK1,j ∗ Ğj by replacing F by Gj , we omit it.

By statement (1.3), the result of Proposition 9 for the function η̆ is valid. Now, let us study
the function ∇η̆, which satisfies equation (19):

∇η̆ = ∇K0 ∗ F̆ + 2c
N∑

j=1

∇K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

∇Kj,k ∗ Pj,k.

We then establish

Step 9. For every β ∈ [0,min{2α,N + 1}[, we have

(1.14) ∇K0 ∗ F̆ ∈M∞
β (RN )
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(1.15) ∇K1,j ∗ Ğj ∈M∞
β (RN )

We can establish likewise to statement (1.12) by Theorem 5 that

(|.|β∇K0) ∗ F̆ ∈ L∞(RN ),

for every β ∈ [0, N + 1[. We also deduce from Corollary 2 that for every q ∈ [1, N
N−1 [ sufficiently

small and every β ∈ [0, 2α[,

‖∇K0 ∗ (|.|βF̆ )‖L∞(RN ) ≤ ‖∇K0‖Lq(RN )‖F̆‖Mq′
β (RN )

< +∞.

By doing similarly, the functions ∇K1,j ∗ (|.|βĞj) and (|.|β∇K1,j) ∗ Ğj are also bounded for
β ∈ [0,min{N + 1, 2α}[, which completes the proof of this step.

The result of Proposition 9 for the function ∇η̆ follows from statement (1.6), and, it only
remains to study the function ∇θ̆, which satisfies equation (16),

∂j θ̆ =
c

2
K1,j ∗ F̆ + c2

N∑

k=1

L1,j,k ∗ Ğk +
N∑

k=1

Rj,k ∗ Ğk +
c

2

N∑

k=1

N∑

l=1

Lj,k,l ∗ Pk,l

+
N∑

k=1

N∑

l=1

Rk,l ∗Qj
k,l.

The study of the terms involving the kernels K1,j , L1,j,k and Lj,k,l is strictly identical to those
of Steps 8 and 9.

Step 10. Let (j, k, l) ∈ J1, NK3. Then,

(1.16) K1,j ∗ F̆ ∈M∞
β (RN )

(1.17) L1,j,k ∗ Ğk ∈M∞
β (RN )

for every β ∈ [0,min{N, 2α}[.

Since statements (1.9) and (1.11) are still valid, it only remains to evaluate the function
Rj,k ∗ Ğk:

Step 11. For every β ∈ [0,min{N, 2α}[,

(1.18) Rj,k ∗ Ğk ∈M∞
β (RN ).

Indeed, by the previous steps of this proof, the functions |.|β η̆ and |.|β∇η̆ are bounded on
RN for β ∈ [0,min{N, 2α}[: so, the functions |.|βĞ and |.|β∇Ğ are also bounded on RN for β
in this range. Since the functions Ğ and ∇Ğ belong to all the spaces Lp(RN ), by Proposition 5,
we can conclude that the functions |.|βRj,k ∗ Ğk are bounded for β in this range. This ends the
proof of Proposition 9.

By combining Propositions 8 and 9, we know that

(η̆,∇θ̆) ∈M∞
β (RN )2,

for every
β ∈ [0, N [,
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and,
∇η̆ ∈M∞

β (RN ),

for every
β ∈ [0, N + 1[.

Thus, it only remains to study the case β = N or β = N +1. We begin by the asymptotic decay
of the functions F̆ and Ğ.

Step 12. The function
|.|N+1(|F̆ |+ |Ğ|)

is bounded on RN .

This step follows from the quadratic form of F̆ and Ğ, and from the previous statements.

We then study the function η̆ i.e. equation (16)

η̆ = K0 ∗ F̆ + 2c
N∑

j=1

K1,j ∗ Ğj +
N∑

j=1

N∑

k=1

Kj,k ∗ Pj,k.

Since we already have (1.3), we only need to prove

Step 13. We have

(1.19) K0 ∗ F̆ ∈M∞
N (RN )

(1.20) K1,j ∗ Ğj ∈M∞
N (RN )

which follows from repeating the proof of Step 8, using Theorem 6 and Step 12 instead of
Theorem 5 and Step 7.

For the function ∇η̆, by equation (19) and statement (1.6), we also only have to prove

Step 14. We have

(1.21) ∇K0 ∗ F̆ ∈M∞
N+1(RN )

(1.22) ∇K1,j ∗ Ğj ∈M∞
N+1(RN )

which also follows from repeating the proof of Step 9, using Theorem 6 and Step 12 instead
of Theorem 5 and Step 7.

Finally, we have the same kind of result for the function ∇θ̆ ie

Step 15. Let (j, k, l) ∈ J1, NK3. Then,

(1.23) K1,j ∗ F̆ ∈M∞
N (RN )

(1.24) L1,j,k ∗ Ğk ∈M∞
N (RN ),

which is clear by repeating the proof of Step 10, using Theorem 6 and Step 12 instead of
Theorem 5 and Step 7. Since statements (1.9) and (1.11) are still valid, it only remains to
evaluate the function Rj,k ∗ Ğk:

Step 16. We have
(1.25) Rj,k ∗ Ğk ∈M∞

N (RN ).

Indeed, by the previous steps of this proof, the functions |.|N η̆ and |.|N+1∇η̆ are bounded on
RN : so, the functions |.|N Ğ and |.|N+1∇Ğ are also bounded on RN . Since the functions Ğ and
∇Ğ belong to L1(RN ), by Proposition 6, we can conclude that the functions |.|NRj,k ∗ Ğk are
bounded on RN , which completes the proofs of this step and of Theorem 7.
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4 Convergence and asymptotic decay at infinity

In this last part, we first prove the convergence at infinity of v towards a complex number of
modulus one, v∞, in dimension larger than three and then, complete the proof of Theorem 2.

4.1 Convergence at infinity in dimension larger than three

Before concluding the proof of Theorem 2, we will study the convergence at infinity of v by
establishing the following general proposition concerning the limit of a function at infinity.

Proposition 10. We consider a regular function v on RN : we suppose that N is greater than
three and that the gradient of v belongs to the spaces W 1,p0(RN ) and W 1,p1(RN ) where

1 < p0 < N − 1 < p1 < +∞.

Then there is a constant v∞ ∈ C which satisfies

v(x) →
|x|→+∞

v∞.

Proof. We first construct the limit v∞. Indeed, we have

∫

SN−1

∫ +∞

1
|∂rv(rξ)|drdσ ≤

∫

SN−1

(∫ +∞

1
|∇v(rξ)|p0rN−1dr

) 1
p0

(∫ +∞

1
r
− N−1

p0−1dr

) 1
p′0
dσ

< +∞

which gives ∫ +∞

1
|∂rv(rξ)|dr < +∞ a.e.

Therefore, there is a measurable function v∞ defined on SN−1 such that

v(rξ) →
r→+∞ v∞(ξ) a.e.

Now, let us denote

∀p ∈ [p0, p1], ∀r ∈ R∗+, Ip(r) = rN−1

∫

SN−1

|∇v(rξ)|pdσ.

This function is regular on R∗+ and its derivative satisfies

∀r ∈ R∗+, |I ′p(r)| ≤ (N − 1)rN−2

∫

SN−1

|∇v(rξ)|pdσ + prN−1

∫

SN−1

|∇v(rξ)|p−1|∂r∇v(rξ)|dσ,

which gives
∫ +∞

0
|I ′p(r)|dr ≤ A(||∇v||p

Lp(RN )
+ ||∇v||p−1

Lp(RN )
||∇v||W 1,p(RN )) < +∞.

So the function Ip has a limit at +∞, and since

∫ +∞

0
Ip(r)dr = ||∇v||p

Lp(RN )
< +∞,
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this limit is zero. Furthermore, if we denote

∀r ∈ R∗+, ∀ξ ∈ SN−1, vr(ξ) = v(rξ),

we remark that
|∇v(rξ)|2 = |∂rv(rξ)|2 + r−2|∇SN−1

vr(ξ)|2
which leads finally to

rN−1−p

∫

SN−1

|∇SN−1
vr(ξ)|pdσ →

r→+∞ 0.

Thus, if N − 1 ≤ q < min{p1, N}, we get for all r ∈ R∗+
∫

SN−1

|vr(ξ)− v∞(ξ)|qdσ ≤
∫

SN−1

(∫ +∞

r
|∂rv(sξ)|ds

)q

dσ

≤
∫

SN−1

rq−N

∫ +∞

r
|∇v(sξ)|qsN−1dsdσ

≤ AN,q||∇v||qLq(RN )
rq−N ,

which gives

||vr − v∞||LN−1,1(SN−1) =
1

N − 1

∫ |SN−1|

0
t−

N−2
N−1 |vr − v∞|∗(t)dt

≤ AN

(∫ |SN−1|

0
|vr − v∞|∗q(t)dt

) 1
q
(∫ |SN−1|

0
t−

q′(N−2)
N−1 dt

) 1
q′

≤ AN,q||vr − v∞||Lq(SN−1)

≤ AN,q||∇v||qLq(RN )
rq−N

→
r→+∞ 0.

Now, we fix ε > 0 and we denote

∀r ∈ R+,

{
∀λ ∈ R∗+, ar(λ) = |{ξ ∈ SN−1/|∇SN−1

vr(ξ)| > λ}|
∀t ∈ R∗+, fr(t) = |∇SN−1

vr|∗(t) = inf{λ ∈ R∗+/ar(λ) ≤ t}.
We have just showed that there is rε > 0 such that

∀r > rε, ∀q ∈ {p0, p1}, rN−1−q

∫

SN−1

|∇SN−1
vr(ξ)|qdσ ≤ εq,

which gives

∀λ ∈ R∗+, ar(λ) ≤ min{ εp0

rN−1−p0λp0
,

εp1

rN−1−p1λp1
},

and,
∀t ∈ R∗+, fr(t) ≤ min{ ε

r
N−1
p0

−1
t

1
p0

,
ε

r
N−1
p1

−1
t

1
p1

}.

Thus, we finally get

||∇SN−1
vr||LN−1,1(SN−1) =

1
N − 1

∫ |SN−1|

0
fr(t)t

−N−2
N−1dt

≤ 1
N − 1

(εr1−
N−1
p1

∫ r1−N

0
t
−N−2

N−1
− 1

p1 dt

+ εr
1−N−1

p0

∫ |SN−1|

r1−N

t
−N−2

N−1
− 1

p0 dt)

≤ AN,p0,p1ε
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which proves that ∇SN−1
vr converges to 0 in LN−1,1(SN−1) when r tends to +∞. But, vr

converges to v∞ in LN−1,1(SN−1), so, the gradient of v∞ is zero and v∞ is constant. Besides,
by a theorem of A. Cianchi and L. Pick [7], we know that there is a constant A which satisfies
for all r > 0

||vr − v∞||L∞(SN−1) ≤ A(||vr − v∞||LN−1,1(SN−1) + ||∇SN−1
(vr − v∞)||LN−1,1(SN−1))

which gives
||vr − v∞||L∞(SN−1) →

r→+∞ 0

and ends the proof of this proposition.

Now, we can prove the first part of Theorem 2: if v is a travelling wave of finite energy and
of speed c <

√
2, it satisfies the hypothesis of Proposition 10 thanks to Theorem 4. So there is

a constant v∞ ∈ C such that
v(x) →

|x|→+∞
v∞.

It remains to show that this constant has a modulus equal to one, which follows from Lemma 5.

Remark 8. In order to simplify the notations, and since the solutions are defined up to a
rotation, we will suppose in the following that

v∞ = 1.

Hence, ρ and θ uniformly tend to 1, respectively 0, at infinity.

4.2 Asymptotic decay for θ and v

We are now in position to prove the second part of Theorem 2: in order to do so, we show the
following proposition:

Proposition 11. The function (1 + |.|N−1)θ̆ is bounded on RN .

Proof. Indeed, thanks to the previous paragraph, θ̆ is bounded, and, by Theorem 7, we know
that the function |.|N∇θ̆ is bounded on RN . As we have

∀x ∈ RN \ {0}, θ̆(x) = −
∫ +∞

|x|
∂rθ̆(

sx

|x|)ds,

we get

∀x ∈ RN \ {0}, |θ̆(x)| ≤ A

∫ +∞

|x|

ds

sN
≤ A

|x|N−1
.

Finally, we also know by Theorem 7 that the function |.|N∇v is bounded on RN , and similarly,
we deduce that the function |.|N−1(v − 1) is bounded on RN , which ends the proof of Theorem
2.
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