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Abstract

We investigate the asymptotic behaviour of the subsonic travelling waves of finite energy
in the Gross-Pitaevskii equation in dimension larger than two. In particular, we give their
first order development at infinity in the case they are axisymmetric, and link it to their
energy and momentum.

Introduction

1 Motivations

In this article, we focus on the travelling waves in the Gross-Pitaevskii equation

i∂tu = ∆u+ u(1− |u|2) (1)

of the form u(t, x) = v(x1 − ct, . . . , xN ). The parameter c ≥ 0 represents the speed of the
travelling wave, which moves in direction x1. The equation for v, which we will consider now,
writes

ic∂1v + ∆v + v(1− |v|2) = 0. (2)

The Gross-Pitaevskii equation is a physical model for the Bose-Einstein condensation, which is
associated at least formally to the so-called Ginzburg-Landau energy

E(v) =
1
2

∫

RN

|∇v|2 +
1
4

∫

RN

(1− |v|2)2, (3)

and to the momentum
~P (v) =

1
2

∫

RN

i∇v.v. (4)

Equation (1) presents an hydrodynamic form
{
∂tρ+ div(ρv) = 0,
ρ(∂tv + v.∇v) +∇ρ2 = ρ∇

(
∆ρ
ρ − |∇ρ|2

2ρ2

)
,

(5)

obtained by using the Madelung transform [14]

u =
√
ρeiθ,

and denoting
v = 2∇θ.
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Equations (5) are similar to Euler equations for an irrotational ideal fluid with pressure p(ρ) = ρ2.
In particular, the speed of the sound waves near the constant solution u = 1 is

cs =
√

2.

The travelling waves of finite energy play an important role in the long time dynamics of
general solutions and were thoroughly studied by C.A. Jones, S.J. Putterman and P.H. Roberts
[13, 12]. They conjectured that there exist non-constant travelling waves of finite energy only
in the subsonic case

0 < c <
√

2.

F. Béthuel and J.C. Saut [3, 2] first investigated mathematically this conjecture. In dimension
two, they showed the existence of non-constant travelling waves of finite energy for small values
of c, and for a sequence of values of c <

√
2 tending to

√
2. They also proved their non-existence

for c = 0 in every dimension. Their work was complemented in dimension larger than three by
F. Béthuel, G. Orlandi and D. Smets [1], who also showed their existence when c is small. On
the other hand, we proved their non-existence for every c >

√
2 [8]. Thus, the problem of their

non-existence only remains open in the sonic case c =
√

2 (see [10] however for more details).
We will deliberately omit this case and only consider from now on the subsonic travelling waves,
i.e. we will assume

0 < c <
√

2.

Under this assumption and the additional hypothesis the travelling waves are axisymmetric
around axis x1, C.A. Jones, S.J. Putterman and P.H. Roberts [13, 12] characterised their be-
haviour at infinity by giving their first order development up to a multiplicative constant of
modulus one. In dimension two, they derived a formal asymptotic expansion

v(x)− 1 ∼
|x|→+∞

iαx1

x2
1 + (1− c2

2 )x2
2

(6)

and in dimension three,

v(x)− 1 ∼
|x|→+∞

iαx1

(x2
1 + (1− c2

2 )(x2
2 + x2

3))
3
2

. (7)

Here, the constant α is the stretched dipole coefficient linked to the energy E(v) and to the
scalar momentum in direction x1, p(v) = P1(v), by the formulae

2πα

√
1− c2

2
= cE(v) + 2

(
1− c2

4

)
p(v) (8)

in dimension two, and
4πα =

c

2
E(v) + 2p(v) (9)

in dimension three.

The goal of this paper is to provide a rigorous derivation of the asymptotic behaviour de-
scribed in (6), (7), (8) and (9), and a generalisation to every dimension N ≥ 2.

2 Main results

Our main results are summed up in the next three theorems. The first one is the most general.
We consider any subsonic travelling waves of finite energy in any dimension N ≥ 2, and prove
the existence of their first order development at infinity (which is consistent with conjectures
(6)) and (7) in dimensions two and three). Moreover, we compute a linear partial differential
equation satisfied by the first order term of their asymptotic expansion.
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Theorem 1. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N ≥ 2
of finite energy and speed 0 < c <

√
2. There exist a complex number λ∞ of modulus one and a

smooth function v∞ defined from the sphere SN−1 to R such that

|x|N−1(v(x)− λ∞)− iλ∞v∞

(
x

|x|
)

→
|x|→+∞

0 uniformly.

Moreover, the function v∞ satisfies the following linear partial differential equation on SN−1

∆SN−1v∞− c2

2
∂S

N−1

1 (∂S
N−1

1 v∞)+ c2(N − 1)σ1∂
SN−1

1 v∞+(N − 1)(1+
c2

2
(1− (N +1)σ2

1))v∞ = 0.

(10)

Remarks 1. 1. Subsequently, we will always assume that

λ∞ = 1.

Indeed, if this is not the case, we can study the function λ−1∞ v instead of v: it is also a travelling
wave of finite energy and of speed c which satisfies equation (2).

2. Equation (10) is defined on the sphere SN−1 immersed in the space RN . In order to
clarify its sense, we need to explicit some notations for derivations on SN−1. Thus, consider
some function f ∈ C∞(SN−1,C): the notation ∂S

N−1

i is defined by

∀i ∈ {1, . . . , N}, ∀x ∈ SN−1, ∂S
N−1

i f(x) = lim
t→0

f( x+tei
|x+tei|)− f(x)

t
,

where (e1, . . . , en) is the canonical basis of RN . The operator ∆SN−1 is the usual Laplace-Beltrami
operator on the sphere SN−1, given by

∀x ∈ SN−1,∆SN−1f(x) =
N∑

i=1

∂S
N−1

i (∂S
N−1

i f)(x).

Our next theorems specify the form of the limit function v∞ in two cases: for the axisymmetric
travelling waves, which only depend on the variables x1 and

x⊥ =

√√√√
N∑

i=2

x2
i ,

in every dimension N ≥ 2, and for every travelling wave in dimension N = 2. In both cases,
equation (10) reduces to an ordinary differential equation of second order, which is entirely
integrable. In particular, it yields a proof of conjectures (6), (7), (8) and (9) in the axisymmetric
case.

Theorem 2. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N ≥ 2
of finite energy and speed 0 < c <

√
2, axisymmetric around axis x1. Then, there exists some

constant α such that the function v∞ is given by

∀σ = (σ1, . . . , σN ) ∈ SN−1, v∞(σ) = α
σ1

(1− c2

2 + c2σ2
1

2 )
N
2

. (11)

Moreover, the constant α is equal to

α =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

(
4−N

2
cE(v) + (2 +

N − 3
2

c2)p(v)
)
. (12)
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Likewise, in dimension two, we can describe explicitly the asymptotic behaviour of every
travelling wave.

Theorem 3. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension two of
finite energy and speed 0 < c <

√
2. Then, there exist some constants α and β such that the

function v∞ is given by

∀σ ∈ SN−1, v∞(σ) = α
σ1

1− c2

2 + c2σ2
1

2

+ β
σ2

1− c2

2 + c2σ2
1

2

. (13)

Moreover, the constants α and β are equal to

α =
1

2π
√

1− c2

2

(cE(v) + (2− c2

2
)p(v)),

β =

√
1− c2

2

π
P2(v).

(14)

Remarks 2. 1. There is a difficulty in the definition of ~P (v). Indeed, the integral which appears
in definition (4) is not always convergent for a travelling wave of finite energy. In order to state
formulae (12) and (14) rigorously, we define the momentum ~P (v) as

~P (v) =
1
2

∫

RN

i∇v.(v − 1), (15)

and the scalar momentum in direction x1 by

p(v) =
1
2

∫

RN

i∂1v.(v − 1). (16)

By [9], those integrals are well-defined in the case of travelling waves of finite energy. However,
we will give another equivalent definition of the momentum which is more suitable in our context
(see Subsection 3.1 of the introduction).

2. Theorem 3 is consistent with the axisymmetric case: assuming β = 0, we recover the
axisymmetric solution of Theorem 2 with the same value of the stretched dipole coefficient α.

The integration of equation (10) seems rather involved in dimension N ≥ 3: we are not able
to compute an explicit formula for the function v∞ from equation (10). However, we conjecture
its expression as follows.

Conjecture 1. Let v be a travelling wave for the Gross-Pitaevskii equation of finite energy and
speed 0 < c <

√
2. Then, there exist some constants α, β2, . . ., βN such that the function v∞ is

equal to

∀σ ∈ SN−1, v∞(σ) = α
σ1

(1− c2

2 + c2σ2
1

2 )
N
2

+
N∑

j=2

βj
σj

(1− c2

2 + c2σ2
1

2 )
N
2

.

Moreover, the constants α and βj are equal to

α =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

(
4−N

2
cE(v) + (2 +

N − 3
2

c2)p(v)
)
,

βj =
Γ(N

2 )

π
N
2

(
1− c2

2

)N−1
2

Pj(v).
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Remark 1. In the second part, we will motivate this conjecture. Notice that, in case Conjecture
1 holds, it yields every possible asymptotic behaviour of a travelling wave v of finite energy in the
Gross-Pitaevskii equation. In particular, the first order term v∞ of the asymptotic expansion
of v is completely determined by some integral quantities α, β2, . . ., βN , related to the energy
E(v) and the momentum ~P (v).
This raises an interesting question. Consider N real numbers a1, . . ., aN : is it possible to
construct a travelling wave v such that the values of the integral quantities α, β2, . . ., βN are
exactly equal to a1, . . ., aN ? In other words, is it possible to construct travelling waves v whose
asymptotic behaviour correspond to any possible one given by Conjecture 1, or are there other
restrictions for the possible asymptotic behaviours ?
To our knowledge, those questions remain open problems. Indeed, the existence results of F.
Béthuel and J.C. Saut [3, 2] in dimension two and F. Béthuel, G. Orlandi and D. Smets [1] in
dimension N ≥ 3 prove the existence of travelling waves which are assumed to be axisymmetric.
However, in this case, we can show that the constants β2, . . ., βN are all equal to 0 (which is
consistent with Theorem 2). Therefore, we do not know any travelling wave for which the values
of β2, . . ., βN are not 0. Thus, a first step to answer to our questions could be to prove the
existence of travelling waves which are not axisymmetric.

One of the main interests of Theorems 1, 2 and 3 is their sharpness. In order to clarify this
claim, we must recall some recent mathematical results. F. Béthuel and J.C. Saut [3, 2] first
investigated the asymptotic behaviour of subsonic travelling waves in dimension two. They gave
a mathematical evidence for their convergence towards a constant of modulus one at infinity.
We complemented their work in [7] by proving the same convergence in every dimension N ≥ 3.
Finally, in [9], we gave a first estimate of their decay at infinity (which is moreover an important
starting point of the analysis in this paper).

Theorem 4 ([9]). In dimension N ≥ 2, for every travelling wave v for the Gross-Pitaevskii
equation of finite energy and speed 0 < c <

√
2, the function

x 7→ |x|N−1(v(x)− 1)

is bounded on RN .

Theorems 1, 2, 3 and 4 are then sharp because the decay rate at infinity they give is optimal.
There exist some travelling waves v such that the function

x 7→ |x|β(v(x)− 1)

is not bounded on RN for any β > N−1: the decay exponent N−1 is the best possible in general
(although some travelling waves, the constant ones for instance, can decay faster at infinity).
The proof of the existence of such travelling waves v follows from two arguments. The first one
is the proof of the existence of non-constant axisymmetric travelling waves by F. Béthuel and
J.C. Saut [3, 2] in dimension two, and F. Béthuel, G. Orlandi and D. Smets [1] in dimension
N ≥ 3. The second one relies on the next corollary of Theorem 2.

Corollary 1. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N ≥ 2
of finite energy and speed 0 < c <

√
2, axisymmetric around axis x1. Then, the constant α is

equal to 0 if and only if v is a constant travelling wave.

Therefore, if we now consider a non-constant axisymmetric travelling wave v, by Theorem
2 and Corollary 1, the function v∞ is not identically equal to 0 on SN−1. In particular, by
Theorem 1, it means that the function

x 7→ |x|β(v(x)− 1)
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is not bounded on RN for any β > N − 1, which shows the sharpness of Theorems 1, 2, 3 and 4.

Now, in the hope of clarifying the proof of Theorem 1 and in order to specify general argu-
ments which could prove fruitful for other equations, we are going to explain how to infer such
a theorem.

3 Sketch of the proof of Theorem 1

Theorem 1 deals with the asymptotic expansion of a travelling wave. We construct the limit at
infinity of some function, in our case the function

x 7→ |x|N−1(v(x)− 1),

prove that the convergence is uniform and then compute a partial differential equation satisfied
by the limit function.

3.1 A new formulation of equation (2)

In [9], we already investigated the asymptotic behaviour of the travelling waves v in the Gross-
Pitaevskii equation. In particular, we derived Theorem 4 just mentioned above. The proof of
this theorem relies on a new formulation of equation (2), also relevant here, which we are going
to recall concisely. The first argument is to state the local smoothness and the Sobolev regularity
of a subsonic travelling wave v (see also the articles of F. Béthuel and J.C. Saut in dimension
two [3, 2], and of A. Farina [6]).

Proposition 1 ([9]). If v is a solution of finite energy of equation (2) in L1
loc(RN ), then, v is

C∞, bounded, and the functions η := 1 − |v|2 and ∇v belong to all the spaces W k,p(RN ) for
k ∈ N and 1 < p ≤ +∞.

It follows that the modulus ρ of v converges to 1 at infinity. In particular, there is some real
number R0 such that

ρ ≥ 1
2

on B(0, R0)c.

Since the energy E(v) is finite, it follows (up to a standard degree argument in dimension two)
that we may construct a lifting θ of v on B(0, R0)c, that is a function in C∞(B(0, R0)c,R) such
that

v = ρeiθ.

We next compute new equations for the new functions η and ∇θ: since θ is not well-defined on
RN , we introduce a cut-off function ψ ∈ C∞(RN , [0, 1]) such that

{
ψ = 0 on B(0, 2R0),
ψ = 1 on B(0, 3R0)c.

All the asymptotic estimates obtained in [7, 9] are independent of the choice of R0 and ψ, and
it will also be the case here. We finally deduce

∆2η − 2∆η + c2∂2
1,1η = −∆F − 2c∂1div(G) (17)

and
∆(ψθ) =

c

2
∂1η + div(G), (18)

where
F = 2|∇v|2 + 2η2 − 2ci∂1v.v − 2c∂1(ψθ) (19)
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and
G = i∇v.v +∇(ψθ). (20)

Remark 2. At this stage, we can state another definition of the momentum

~P (v) =
1
2

∫

RN

(i∇v.v +∇(ψθ)),

and of the scalar momentum in direction x1

p(v) =
1
2

∫

RN

(i∂1v.v + ∂1(ψθ)).

A straightforward computation shows that those new definitions are equivalent to the previous
ones given by formulae (15) and (16). In the following, we will always use them in preference to
formulae (15) and (16) since they seem more suitable in our context.

It follows from those new definitions and from formulae (19) and (20) that the functions
F and G are almost quadratic functions of η and ∇v, related to the density of energy and of
momentum. This is an important aspect of equations (17) and (18): they link our new functions
η and θ to some superlinear quantities F and G, which have a relevant interpretation in terms
of quantities conserved by the Gross-Pitaevskii equations. In particular, the superlinear nature
of the nonlinearities is a key ingredient to establish the asymptotic properties of the travelling
waves. It motivates the introduction of the new variables η and θ.

3.2 Convolution equations

It is well-known that the asymptotic properties of solutions to linear partial differential equations
are related to the behaviour at infinity of their kernels, and this, for a large deal, also remains
valid for many nonlinear problems. Our approach is reminiscent of the article of J.L. Bona and
Yi A. Li [4], and also appeared in the articles of A. de Bouard and J.C Saut [5], and M. Maris
[15, 16]. It consists in transforming the partial differential equations satisfied by the travelling
wave (equation (2) in our context) in some convolution equations. In the case of the travelling
waves for the Gross-Pitaevskii equation, we already computed such convolution equations in
[7, 9]. They follow from equations (17) and (18) and write

η = K0 ∗ F + 2c
N∑

j=1

Kj ∗Gj (21)

where K0 and Kj are the kernels of Fourier transform,

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
, (22)

respectively

K̂j(ξ) =
ξ1ξj

|ξ|4 + 2|ξ|2 − c2ξ21
, (23)

and for every j ∈ {1, . . . , N},

∂j(ψθ) =
c

2
Kj ∗ F + c2

N∑

k=1

Lj,k ∗Gk +
N∑

k=1

Rj,k ∗Gk (24)
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where Lj,k and Rj,k are the kernels of Fourier transform,

L̂j,k(ξ) =
ξ21ξjξk

|ξ|2(|ξ|4 + 2|ξ|2 − c2ξ21)
, (25)

respectively

R̂j,k(ξ) =
ξjξk
|ξ|2 . (26)

Equations (21) and (24) are convolution equations with terms of the form K ∗ f . The functions
K are kernels with explicit Fourier transforms which are rational fractions. The functions f are
nonlinear functions of η, ∇v and ∇(ψθ).

Our purpose is now to compute the limit at infinity of various weighted functions, for instance

x 7→ |x|Nη(x).

By the previous convolution equations, it reduces to get the limit at infinity of functions of the
type

x 7→ |x|pK ∗ f(x) =
∫

RN

|x|pK(x− y)f(y)dy, (27)

where p is equal to N , K refers to one of the kernels K0, Kj , Lj,k or Rj,k and f to the functions F
or G. We will handle this problem, which is of independent interest1, by invoking the dominated
convergence theorem. Here, a main part of the analysis is devoted to study the properties of
the kernel K, leaving the nonlinear nature of the function f aside for the moment.2

3.3 Main properties of the kernels and pointwise convergence at infinity

In this section, we derive a number of results for our model function (27), which enter directly
in the proof of Theorem 1 and which rely on the dominated convergence theorem as mentioned
above. More precisely, we wish to establish limits of functions of the form (27), as |x| → +∞,
depending on the value of p and the form of K and f .

Step 1. Pointwise convergence of the kernels.

The first step is to prove the pointwise convergence when |x| tends to +∞ of the integrand,
i.e.

y 7→ |x|pK(x− y),

where the function K is a kernel whose Fourier transform is known explicitly, actually in our
case a rational fraction (the second step being the domination of the integrand).

Remark 3. It can depend on the direction of the convergence σ = x
|x| : denoting x = Rσ where

R > 0 and σ ∈ SN−1, we are reduced to study the pointwise convergence of the functions

y 7→ RpK(Rσ − y)

when R tends to +∞ for every σ ∈ SN−1.
1A similar analysis will be carried out on the solitary waves for the Kadomtsev-Petviashvili equation (see [11]).
2If the function f had compact support, then the limit at infinity of K ∗ f would be directly deduced from

the limit of K. In our subsequent analysis, we also have to take into account the decay of f using nonlinear
arguments.
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Our argument relies on the properties of the Fourier transform of the kernel K. Indeed, we
introduce the space of functions

K̂(RN ) = {u ∈ C∞(RN \ {0},C), ∀i ∈ N, diu ∈M∞
i (RN ) ∩M∞

i+2(RN )},

where M∞
α (RN ) is defined by

M∞
α (RN ) = {u : RN 7→ C / ‖u‖M∞

α (RN ) = sup{|x|α|u(x)|, x ∈ RN} < +∞},

for every α > 0.

Remark 4. The choice of the spaces is suggested by the form of the Fourier transforms of the
kernels K0, Kj and Lj,k. They belong to K̂(RN ) by formulae (22), (23) and (25). However, we
can introduce some variants for other equations.

Now, we can specify the pointwise convergence of some functions whose Fourier transforms
are in K̂(RN ). Indeed, we claim

Theorem 5. Let α ∈ NN and K ∈ S′(RN ,C). Assume its Fourier transform K̂ is a rational
fraction

K̂ =
P

Q
,

which belongs to K̂(RN ) and such that

∀ξ ∈ RN \ {0}, Q(ξ) 6= 0.

Then, there exists a measurable function Kα∞ ∈ L∞(SN−1,C) such that

∀(σ, y) ∈ SN−1 × RN , RN+|α|∂αK(Rσ − y) →
R→+∞

Kα
∞(σ). (28)

Remark 5. In particular, we prove the pointwise convergence of all the derivatives of the kernels
K which satisfy the assumptions of Theorem 5: it will be very useful in the following.

As previously mentioned, Theorem 5 relies on the Fourier transform of the kernels K through
the next lemma which already appeared in [9].

Lemma 1. Let (σ, y,R) ∈ SN−1 × RN × R∗+ and assume |y| < R and σj 6= 0 for some integer
1 ≤ j ≤ N . Consider a tempered distribution K ∈ S′(RN ,C) such that its Fourier transform is
in K̂(RN ). Then, we have

RNK(Rσ − y) =
iN

(2π(σj − yj

R ))N

(∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ +

∫

B(0, 1
R

)
∂N

j K̂(ξ)

(eiξ.(Rσ−y) − 1)dξ +R

∫

S(0, 1
R

)
ξj∂

N−1
j K̂(ξ)eiξ.(Rσ−y)dξ

)
.

(29)

The proof of Theorem 5 then follows from applying the dominated convergence theorem to
formula (29).

There are many other ways to study the convergences as in (28), but the use of the Fourier
transforms of the kernels seems well-adapted to the context of partial differential equations,
where we know them explicitly. However, in some cases, we know the explicit expression of the
kernel K. It allows to bypass Theorem 5 for the computation of the limit of (27) by direct

9



computations. This is the case for the so-called composed Riesz kernels Rj,k. Indeed, if f is a
smooth function and if we denote gj,k = Rj,k ∗ f , we compute

∀x ∈ RN , gj,k(x) =
Γ(N

2 )

2π
N
2

∫

|x−y|>1

δj,k|x− y|2 −N(x− y)j(x− y)k

|x− y|N+2
f(y)dy +

Γ(N
2 )

2π
N
2∫

|x−y|≤1

δj,k|x− y|2 −N(x− y)j(x− y)k

|x− y|N+2
(f(y)− f(x))dy.

(30)

Here, the difficulty to apply the dominated convergence theorem does not come from the limit
at infinity of the kernels, but instead, from the domination of this convergence.

Step 2. Domination of the convergence.

The second step is to dominate the integrand, given by

y 7→ |x|pK(x− y)f(y),

independently of x ∈ RN . In order to do so, we assume for instance that f is a smooth function
on RN with some algebraic decay, i.e. f and some of its derivatives belong to some space
C∞(RN ) ∩M∞

α (RN ) for some real number α > 0.

Remark 6. The choice of such assumptions is suggested by the algebraic decay of the functions
F and G. Indeed, in [9], we computed the algebraic decay of the functions η, ∇(ψθ) and ∇v by
an argument due to J.L. Bona and Yi A. Li [4], and A. de Bouard and J.C Saut [5] (see also the
articles of M. Maris [15, 16] for many more details).

Proposition 2 ([9]). Let α ∈ NN . Then, the functions η, ∇(ψθ) and ∇v satisfy

• (η, ∂α∇(ψθ), ∂α∇v) ∈M∞
N (RN )3,

• ∂α∇η ∈M∞
N+1(RN ).

By Propositions 1 and 2, and formulae (19) and (20), the functions F and G are smooth on
RN and belong to M∞

2N (RN ), which explains the choice of the assumptions on f . However, it is
possible to introduce some variants for other equations.

Under such assumptions for the function f , it remains to dominate the kernel K. It may be
straightforward when we know its exact expression (for instance, in the case of the composed
Riesz kernels by formula (30)). However, a suitable approach seems once more to estimate the
algebraic decay of K. In many cases, we know the Fourier transform of K. Therefore, we can
invoke some formula like (29) to obtain their algebraic decay. In [9], we handled this difficulty
for the so-called Gross-Pitaevskii kernels K0, Kj and Lj,k, and for their derivatives.

Proposition 3 ([9]). Let N −2 < α ≤ N , n ∈ N and (j, k) ∈ {1, . . . , N}2. The functions dnK0,
dnKj and dnLj,k belong to M∞

α+n(RN ).

Proving such a proposition for the kernel K (with possible different rates of decay) and using
the assumptions on the function f with a suitable value of α enables to dominate the function

y 7→ |x|pK(x− y)f(y)

on RN . We can then apply the dominated convergence theorem to get the pointwise convergence
at infinity of (27), that is the existence of the limit of the function

R 7→ RpK ∗ f(Rσ)

10



when R tends to +∞ for every σ ∈ SN−1.

We can illustrate this argument for the travelling waves for Gross-Pitaevskii equation, where
it can be applied to equations (21) and (24). In this case, the kernels K0, Kj and Lj,k satisfy
the assumptions of Theorem 5 by formulae (22), (23) and (25). Therefore, we can compute their
limit at infinity by Theorem 5. Moreover, they belong to the space of functions

K(RN ) = {u ∈ C∞(RN \ {0},C), ∀n ∈ N,∀α ∈]N − 2, N ], dnu ∈M∞
α+n(RN )}

by Proposition 3. Therefore, by the argument of domination just above, all of those kernels
satisfy

Lemma 2. Let 1 ≤ j, k ≤ N and assume the function K : RN 7→ C is in K(RN ) and its Fourier
transform is a rational fraction which is only singular at the origin and belongs to K̂(RN ). We
consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),

(ii) ∇f ∈ L∞(RN )N ∩M∞
2N+1(RN )N ,

and we denote g = K ∗ f . Then, we have for every σ ∈ SN−1,

• RNg(Rσ) →
R→+∞

K∞(σ)
∫
RN f(x)dx,

• RN+1∂jg(Rσ) →
R→+∞

Kj∞(σ)
∫
RN f(x)dx.

• RN+2∂2
j,kg(Rσ) →

R→+∞
Kj,k∞ (σ)

∫
RN f(x)dx.

Remarks 3. 1. We do not need to assume (ii) to prove the assertions on the pointwise con-
vergence of the functions g and ∂jg: we just need to suppose (ii) in the case of the functions
∂2

j,kg.

2. The notations K∞, Kj∞ and Kj,k∞ denote the limits at infinity of the kernels K, ∂jK and
∂2

j,kK given by Theorem 5. In particular, we prove the pointwise convergence at infinity of some
derivatives of g towards those limits. It will be very useful to compute some partial differential
equations like equation (10). However, it introduces some technical difficulties on which we will
come back in Subsections 3.5 and 3.6.

3. For other equations, we can obtain the domination very differently. In particular, the
algebraic decay conditions appearing in (i) and (ii) are suitable for our equations, but they can
be modified in another context. In the article of J.L. Bona and Yi A. Li [4], domination for a
different class of equations in dimension one is obtained using a different type of argument.

The following lemma yields another illustration of the above argument for the composed
Riesz kernels. It will also be useful to prove Theorem 1.

Lemma 3. Let 1 ≤ j, k, l ≤ N and σ ∈ SN−1. We consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),

(ii) ∇f ∈ L∞(RN ) ∩M∞
2N+1(RN ),

(iii) d2f ∈ L∞(RN ) ∩M∞
2N+2(RN ),

and we denote g = Rj,k ∗ f . Then, we have

11



• RNg(Rσ) →
R→+∞

Γ(N
2

)

2π
N
2

(δj,k −Nσjσk)
∫
RN f(x)dx.

• RN+1∂lg(Rσ) →
R→+∞

NΓ(N
2

)

2π
N
2

(−(δj,kσl + δj,lσk + δk,lσj) + (N + 2)σjσkσl)
∫
RN f(x)dx.

Remarks 4. 1. We do not need to assume (iii) to show the existence of the pointwise limit of
the function g. Moreover, the algebraic decay conditions appearing in (i), (ii) and (iii) should
be fixed appropriately for different equations.

2. In Lemma 3 like in Lemma 2, we also prove the pointwise convergence at infinity of
the gradient of g. It also introduces some technical difficulties on which we will come back in
Subsections 3.5 and 3.6.

Finally, by convolution equations (21) and (24), Lemmas 2 and 3 yield the pointwise conver-
gence at infinity of the functions η and θ.

Proposition 4. Let σ ∈ SN−1 and α ∈ NN such that |α| ≤ 2. Then, there exist some bounded
measurable functions ηα∞ and θα∞ on SN−1 such that





RN+|α|∂αη(Rσ) →
R→+∞

ηα∞(σ),

RN−1+|α|∂αθ(Rσ) →
R→+∞

θα∞(σ).

Remark 7. In particular, we prove the pointwise convergence at infinity of some derivatives
of η and θ. Though it introduces some technical difficulties on which we will come back in
Subsections 3.5 and 3.6, it is a decisive step to derive equation (10).

On the other hand, in Theorem 1, we would like rather more than the pointwise convergence
of the function

x 7→ |x|N−1(v(x)− 1)

towards its limit v∞. We would like to prove its uniform convergence, i.e. whether the function

σ 7→ RN−1(v(Rσ)− 1)

converges to v∞ in L∞(SN−1) when R tends to +∞. Coming back to our model problem (27),
it means that we must prove whether the function

σ 7→ RpK ∗ f(Rσ) = Rp

∫

RN

K(Rσ − y)f(y)dy

converges in L∞(SN−1) when R tends to +∞.

3.4 Uniformity of the convergence

To solve this difficulty, our argument relies on Ascoli-Arzela’s theorem. Indeed, we already know
the existence of a pointwise limit at infinity, so, it will give the uniformity of the convergence.
However, Ascoli-Arzela’s theorem requires some compactness: we deduce it from the algebraic
decay of the gradient of the function K ∗ f . For instance, the sequence of functions

σ 7→ Rp∇SN−1
(K ∗ f)(Rσ)

is uniformly bounded on SN−1, which yields the desired compactness.

Thus, in the context of Gross-Pitaevskii equation, we convert the pointwise convergence of
Proposition 4 in a uniform one.

12



Proposition 5. There exist some functions (η∞, v∞) ∈ C1(SN−1)2 and θ∞ ∈ C2(SN−1) such
that

• RNη(Rσ) →
R→+∞

η∞(σ) in C1(SN−1),

• RN−1θ(Rσ) →
R→+∞

θ∞(σ) in C2(SN−1),

• RN−1(v(Rσ)− 1) →
R→+∞

v∞(σ) in C1(SN−1).

Remark 8. Actually, we prove the convergence at infinity of η, θ and v in some spaces C1(SN−1)
or C2(SN−1), better than L∞(SN−1). It will be fruitful to derive equation (10).

The main difficulty here is to compute the gradient of the function K∗f . Indeed, the gradient
of such a convolution is not always the convolution (∇K) ∗ f , in particular if the kernel K is
not sufficiently smooth. We will see how to overcome such a difficulty in the next subsection.

3.5 Derivation of equation (10)

In the previous subsections, we obtained a uniform limit at infinity, denoted L∞ : SN−1 → C,
for the function

x 7→ |x|pK ∗ f(x).

An ultimate goal for this equation and similar ones would be to obtain an explicit formula
for L∞. However, this seems rather difficult, though presumably not completely out of reach
(see Conjecture 1 for the Gross-Pitaevskii equation). Instead, we compute an elliptic partial
differential equation satisfied by L∞, namely equation (10) in our context. In some cases, for
instance assuming L∞ is axisymmetric, this equation may lead to the explicit form of L∞ (see
Theorems 2 and 3).

In order to derive such an equation, we take the limit at infinity of the partial differential
equation satisfied by the function K ∗f on RN (equation (2) in our case). The implementation of
this argument requires some precise knowledge of the convergence at infinity of some derivatives
of the convolution K ∗ f to the corresponding derivatives of L∞. In order to obtain it, we face
a new difficulty related to the singularity at the origin of the kernels. Indeed, many of the
derivatives of our kernels present a non-integrable singularity at the origin, and therefore, we
are not allowed to derivate the convolution equation without additional care. The method to
overcome this difficulty is reminiscent of some classical arguments in distribution theory, using
integral formulae. More precisely, consider a kernel K which belongs to K(RN ). Its gradient K
is in L1(RN ), which yields

∇(K ∗ f) = (∇K) ∗ f,
provided that f belongs for instance to some space Lp(RN ). However, we cannot write

d2(K ∗ f) = (d2K) ∗ f,

mainly since we do not know enough integrability for the second derivative of K. Yet, we can
find an explicit expression for the second derivative of K ∗ f , provided that f is sufficiently
smooth.

Lemma 4. Let 1 ≤ j, k ≤ N and K ∈ K(RN ). Consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),
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(ii) ∇f ∈ L∞(RN )N ,

and denote g = K ∗ f . Then, the second order partial derivative ∂2
j,kg of g is continuous on RN

and satisfies

∀x ∈ RN , ∂2
j,kg(x) =

∫

B(0,1)c

∂2
j,kK(y)f(x− y)dy +

∫

B(0,1)
∂2

j,kK(y)(f(x− y)− f(x))dy

+
(∫

SN−1

∂jK(y)ykdy

)
f(x).

(31)

Remarks 5. 1. Conditions (i) and (ii) are suitable in our context, since the functions F and
G previously defined in equations (19) and (20) satisfy such conditions. However, they can be
chosen differently for other equations.

2. Formula (31) is quite similar to the expected expression (∂2
j,kK) ∗ f , which cannot hold

since the function ∂2
j,kK presents a singularity at the origin. Indeed, the function K has a double

partial derivative D2
j,kK in the sense of distributions, which is equal to

D2
j,kK = ∂2

j,kK1B(0,1)c + PV (∂2
j,kK1B(0,1)) +

(∫

SN−1

∂jK(y)ykdy

)
δ0,

where PV (∂2
j,kK1B(0,1)) is the principal value at the origin of the function ∂2

j,kK, given by

∀φ ∈ C∞c (B(0, 1)), < PV (∂2
j,kK1B(0,1)), φ >=

∫

B(0,1)
∂2

j,kK(x)(φ(x)− φ(0))dx.

Then, the double partial derivative in the sense of distribution ofK∗f is equal to the distribution
D2

j,kK ∗ f , which yields formula (31).

Likewise, we can compute explicit formulae for the first and second order derivatives of the
composed Riesz kernels.

Lemma 5. Let 1 ≤ j, k, l,m ≤ N and denote

∀y ∈ RN \ {0}, Rj,k(y) =
Γ(N

2 )

2π
N
2

δj,k|y|2 −Nyjyk

|y|N+2
.

We consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),

(ii) ∇f ∈ L∞(RN ) ∩M∞
2N (RN ),

(iii) d2f ∈ L∞(RN ),

and we set g = Rj,k ∗ f . Then, g is C1 on RN and satisfies for every x ∈ RN ,

∂lg(x) =
∫

B(0,1)c

∂lRj,k(y)f(x− y)dy +
∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy

+
∫

SN−1

Rj,k(y)yl(f(x)− y.∇f(x))dy.
(32)

Moreover, if f verifies

14



(iv) d3f ∈ L∞(RN ),

g is C2 on RN and verifies for every x ∈ RN ,

∂2
l,mg(x) =

∫

B(0,1)c

∂2
l,mRj,k(y)f(x− y)dy +

∫

B(0,1)
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)

−1
2
d2f(x)(y, y))dy +

∫

SN−1

Rj,k(y)yl(∂mf(x)− y.∇∂mf(x))dy +
∫

SN−1

∂lRj,k(y)

(f(x)− y.∇f(x) +
1
2
d2f(x)(y, y))ymdy.

(33)

Remarks 6. 1. The algebraic decay conditions appearing in (i) and (ii) should be adapted for
various other kernels.

2. The derivatives and double derivatives of the composed Riesz kernels present singularities
at the origin, which are finite parts of the functions ∂lRj,k and ∂2

l,mRj,k, and some derivatives of
the Dirac mass δ0. They both appear in formulae (32) and (33) as they previously appeared in
formula (31).

Formulae (31), (32) and (33) suitably replace convolution equations to prove the convergence
at infinity of some derivatives of the convolution K ∗ f . Indeed, instead of computing the
pointwise limit at infinity of (27), we now compute the limit at infinity of functions such as

x 7→ |x|p
∫

B(x,1)
∂2

j,kK(x− y)(f(y)− f(x))dy.

However, the argument is the same as in Subsection 3.3. We first use Theorem 5 to prove the
convergence at infinity of the derivatives of the kernel K, and then, Propositions 2 and 3 to
dominate the convergence and get its uniformity. It yields the convergence at infinity of some
derivatives of the convolution K ∗ f , which was yet mentioned in Lemmas 2 and 3. Finally, by
the above argument, we obtain some partial differential equation for the function L∞, which
completes the study of the asymptotics at infinity of a function given by a convolution equation.
In particular, in our context, by equations (21) and (24), it yields a system of linear partial
differential equations on the sphere SN−1 for the functions η∞ and θ∞, from which we can
deduce equation (10).

Proposition 6. The functions η∞ and θ∞ are in C∞(SN−1) and satisfy for every σ ∈ SN−1

η∞(σ) = c(∂S
N−1

1 θ∞(σ)− (N − 1)σ1θ∞(σ)), (34)

∆S
N−1

θ∞(σ) + (N − 1)θ∞(σ) =
c

2
(∂S

N−1

1 η∞(σ)−Nσ1η∞(σ)). (35)

3.6 Completing the proof of Theorem 1

Theorem 1 is a consequence of Proposition 5, which yields the uniform convergence of the
function

x 7→ |x|N−1(v(x)− 1)

towards v∞, and of Proposition 6, which specifies the partial differential equation (10) satisfied
by v∞.

However, in order to complete its proof, we must mention some technical difficulties. In the
case of the travelling waves for the Gross-Pitaevskii equation, the decay estimates obtained in
Proposition 2 for the functions η, ψθ and v are not sufficient to dominate the convergence at
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infinity of the functions d2η, ∇(ψθ) and d2(ψθ) and to prove the uniformity of the convergences
of ∇η, ∇(ψθ) and d2(ψθ). They are neither sufficient to apply Lemmas 2 and 3, nor to prove
Proposition 5.

Thus, we improve Proposition 2 for the functions d2η, d2(ψθ), d2v and d3(ψθ) in the following
theorem.

Theorem 6. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension N ≥ 2 of
finite energy and speed 0 < c <

√
2. Then, we have

• (d2(ψθ), d2v) ∈M∞
N+1(RN )2,

• (d2η, d3(ψθ)) ∈M∞
N+2(RN )2.

This improvement relies on the method introduced by J.L. Bona and Yi A. Li [4], A. de
Bouard and J.C Saut [5] and M. Maris [15, 16]. To get a feeling for the idea of this method,
let us compute for instance the algebraic decay of the function d2η. By equation (21), we must
estimate the algebraic decay of the function d2(K0 ∗F ), which reduces by equation (31) to prove
in particular that the function

x 7→
∫

B(0,1)c

∂2
j,kK0(y)F (x− y)dy

belongs to M∞
N+2(RN ). The method just mentioned above now consists in writing for every

x ∈ RN ,

|x|N+2

∣∣∣∣∣
∫

B(0,1)c

∂2
j,kK0(y)F (x− y)dy

∣∣∣∣∣ ≤A
(∫

B(0,1)c

|∂2
j,kK0(y)||y|N+2|F (x− y)|dy

+
∫

B(0,1)c

|∂2
j,kK0(y)||x− y|N+2|F (x− y)|dy

)

≤A(‖∂2
j,kK0‖M∞

N+2(RN )‖F‖L1(RN )

+ ‖∂2
j,kK0‖L1(B(0,1)c)‖F‖

N+2
2N

M∞
N+2(RN )

‖F‖
N−2
2N

L∞(RN )
),

and verifying that those norms are finite. Thus, this method connects the algebraic decay of
the function d2η for instance, to the decay of the kernels d2K0 or d2Kj . The main point is that
in the case of superlinear nonlinearities (such as the almost quadratic nonlinearities F and G),
the decay of the function is equal to the decay of the kernels. Applying this argument to each
integral appearing in equations (21) and (31), we can obtain the optimal algebraic decay of the
function d2η, which is equal to the decay of the kernels d2K0 and d2Kj . This yields Theorem
6 3, from which we deduce the useful following corollary concerning the nonlinear functions F
and G.

Corollary 2. The functions F and G belong to M∞
2N (RN ), their gradients, to M∞

2N+1(RN ), and
the second order derivatives of G, to M∞

2N+2(RN ).

Finally, it completes the sketch of the proof of Theorem 1. Indeed, by Corollary 2, we now
have sufficient decay rates for the nonlinear functions F and G to apply Lemmas 2 and 3 and
prove the convergence at infinity of the functions d2η, ∇(ψθ) and d2(ψθ). Likewise, by Theorem
6, we also have sufficient decay rates for the functions d2η, d2(ψθ) and d3(ψθ) to prove the
uniformity of the convergences mentioned in Proposition 5.

3Theorem 6 is supposed to be optimal. Indeed, it is commonly conjectured that the functions ∂αη, ∂α∇(ψθ)
and ∂α∇v are in M∞

N+|α|(RN ), at least in the case where |α| ≤ N .
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4 Sketch of the proofs of Theorems 2 and 3

Theorems 2 and 3 both rely on the same argument: the explicit integration of the system of
equations (34) and (35). Indeed, this system presents the striking property to be integrable in
dimension two and in the axisymmetric case. In both cases, it reduces to a system of linear ordi-
nary differential equations of second order, which is entirely integrable in spherical coordinates,
i.e.

σ = (cos(β1), cos(β2) sin(β1), . . . , sin(β1) . . . sin(βN−1)).

In particular, the integration of this system yields formulae (11) and (13).

Proposition 7. In the axisymmetric case, there is a constant α such that for every σ =
(σ1, . . . , σN ) ∈ SN−1,

η∞(σ) = αc

(
1

(1− c2

2 + c2σ2
1

2 )
N
2

−N
σ2

1

(1− c2

2 + c2σ2
1

2 )
N
2

+1

)
, (36)

θ∞(σ) = α
σ1

(1− c2

2 + c2σ2
1

2 )
N
2

. (37)

Likewise, in dimension two, there are constants α and β such that for every σ = (σ1, σ2) ∈ S1,

η∞(σ) = αc

(
1

1− c2

2 + c2σ2
1

2

− 2σ2
1

(1− c2

2 + c2σ2
1

2 )2

)
− 2βc

σ1σ2

(1− c2

2 + c2σ2
1

2 )2
, (38)

θ∞(σ) = α
σ1

1− c2

2 + c2σ2
1

2

+ β
σ2

1− c2

2 + c2σ2
1

2

. (39)

Remark 9. The result above in dimension two holds for every subsonic travelling wave of finite
energy, and not only for the axisymmetric ones.

The only remaining difficulty is now to compute the values of the coefficients α and β. We
link them with the energy E(v) and the momentum ~P (v) by some integral relations obtained
by standard integrations by parts.

Lemma 6. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension N ≥ 2 of
finite energy and speed 0 < c <

√
2. Then, we have

∫

RN

(|∇v|2 + η2)− 2c(1− 2
c2

)p(v) = c(
2N
c2

− 1)
∫

SN−1

σ1θ∞(σ)dσ +
∫

SN−1

σ2
1η∞(σ)dσ, (40)

∀2 ≤ j ≤ N,Pj(v) =
c

4

∫

SN−1

σjσ1η∞(σ)dσ +
N

2

∫

SN−1

σjθ∞(σ)dσ. (41)

Remark 10. Lemma 6 holds even if the travelling waves are not axisymmetric.

Theorems 2 and 3 then follow from equations (36), (37), (38), (39), (40) and (41), and from
the standard Pohozaev identities, which were derived in [8].

Lemma 7 ([8]). Let 0 < c <
√

2. A finite energy solution v to equation (2) satisfies the two
identities

E(v) =
∫

RN

|∂1v|2 (42)

∀2 ≤ j ≤ N,E(v) =
∫

RN

|∂jv|2 + cp(v). (43)

Remark 11. Lemma 7 holds even if the travelling waves are not axisymmetric and if the speed
c is not subsonic (c = 0 or c >

√
2).
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5 Plan of the paper

The paper is divided in three parts. In the first part, we derive the improved decay estimates
for the travelling waves in the Gross-Pitaevskii equation stated in Theorem 6. In a first section,
we prove Lemmas 4 and 5 to obtain explicit integral expressions for some derivatives of the
functions η and ψθ, on which the proof of Theorem 6 relies. In the second section, we compute
the algebraic decay of those derivatives by the argument yet mentioned of J.L. Bona and Yi A.
Li [4], A. de Bouard and J.C Saut [5] and M. Maris [15, 16]. Finally, we complete this section
by inferring Corollary 2.

The proof of Theorem 1 forms the core of the second part. The first ingredient is the pointwise
convergence at infinity of the kernels K0, Kj and Lj,k: it follows from the proofs of Lemma 1
and Theorem 5 in the first section. The second and third sections are devoted to the proof
of the pointwise convergence at infinity of the functions η, ψθ and of some of their derivatives
summed up in Proposition 4. It relies on Lemmas 2 and 3. In the fourth section, we deduce
from Ascoli-Arzela’s theorem and the improved decay estimates of the first part, the uniformity
of the convergence yet described in Proposition 5. Finally, the last section is devoted to the
proof of Proposition 6. Then, Theorem 1 follows from the remark that

v∞ = θ∞,

and the derivation of equation (10) from equations (34) and (35).

The third part is mainly concerned with the proofs of Theorems 2 and 3. In the first section,
we integrate the system of equations (34) and (35) to deduce Proposition 7. In the second
section, we infer Lemma 6 to compute the values of the coefficients α and β in function of the
energy E(v) and the momentum ~P (v). Finally, we end the paper by deducing Corollary 1 from
Lemma 7.

1 Sharp decay of some derivatives of a travelling wave

We first improve the asymptotic decay estimates given in [9] by proving Theorem 6. We state
integral representations of the functions d2η, d2(ψθ) and d3(ψθ) and estimate their algebraic
decay by the standard argument mentioned in the introduction.

1.1 Integral forms of the functions d2η, d2θ and d3θ

As mentioned above, the functions d2η, d2(ψθ) and d3(ψθ) express as linear combinations of
convolution integrals.

Proposition 8. Let 1 ≤ j, k, l ≤ N and x ∈ RN . Then,

∂2
j,kη(x) =

∫

B(0,1)c

∂2
j,kK0(y)F (x− y)dy +

∫

B(0,1)
∂2

j,kK0(y)(F (x− y)− F (x))dy

+
(∫

SN−1

∂jK0(y)ykdy

)
F (x) + 2c

N∑

i=1

(∫

B(0,1)c

∂2
j,kKi(y)Gi(x− y)dy

+
∫

B(0,1)
∂2

j,kKi(y)(Gi(x− y)−Gi(x))dy +
(∫

SN−1

∂jKi(y)ykdy

)
Gi(x)

)
,

(44)
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∂2
j,k(ψθ)(x) =

c

2
∂kKj ∗ F (x) + c2

N∑

i=1

∂kLi,j ∗Gi(x) +
N∑

i=1

(∫

B(0,1)c

∂kRi,j(y)Gi(x− y)dy

+
∫

B(0,1)
∂kRi,j(y)(Gi(x− y)−Gi(x) + y.∇Gi(x))dy +

∫

SN−1

Ri,j(y)yk

(Gi(x)− y.∇Gi(x))dy

)
,

(45)

∂3
j,k,l(ψθ)(x) =

c

2

(∫

B(0,1)c

∂2
k,lKj(y)F (x− y)dy +

∫

B(0,1)
∂2

k,lKj(y)(F (x− y)− F (x))dy

+
(∫

SN−1

∂lKj(y)ykdy

)
F (x)

)
+ c2

N∑

i=1

(∫

B(0,1)c

∂2
k,lLi,j(y)Gi(x− y)dy

+
∫

B(0,1)
∂2

k,lLi,j(y)(Gi(x− y)−Gi(x))dy +
(∫

SN−1

∂lLi,j(y)ykdy

)
Gi(x)

)

+
N∑

i=1

(∫

B(0,1)c

∂2
k,lRi,j(y)Gi(x− y)dy +

∫

B(0,1)
∂2

k,lRi,j(y)(Gi(x− y)

−Gi(x) + y.∇Gi(x)− 1
2
d2Gi(x)(y, y))dy +

∫

SN−1

Ri,j(y)yk(∂lGi(x)

− y.∇∂lGi(x))dy +
∫

SN−1

∂kRi,j(y)yl(Gi(x)− y.∇Gi(x)

+
1
2
d2Gi(x)(y, y))dy

)
.

(46)

Proposition 8 is a straightforward consequence of Lemmas 4 and 5, so we postpone its proof
after their proofs.

Proof of Lemma 4. Consider t ∈] − 1
2 ,

1
2 [\{0}. On one hand, K is in K(RN ), so, the function

∂kK belongs to L1(RN ). On the other hand, f satisfies assumption (i), so, it is a continuous,
bounded function on RN . Therefore, by standard convolution theory, the distribution ∂kg is
actually a continuous function on RN , which writes

∀x ∈ RN , ∂kg(x) =
∫

RN

∂kK(y)f(x− y)dy.

Hence, we can compute

∂kg(x+ tej)− ∂kg(x)
t

=
∫

RN

∂kK(y)
f(x+ tej − y)− f(x− y)

t
dy

=
∫

RN

∂kK(y + tej)− ∂kK(y)
t

f(x− y)dy,

and therefore,

∂kg(x+ tej)− ∂kg(x)
t

=
∫

B(0,1)c

∂kK(y + tej)− ∂kK(y)
t

f(x− y)dy

+

(∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

dy

)
f(x)

+
∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy.

(47)
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For the first term, we state

∀y ∈ B(0, 1)c,
∂kK(y + tej)− ∂kK(y)

t
f(x− y) →

t→0
∂2

j,kK(y)f(x− y),

while, by assumption (i) and since K ∈ K(RN ),

∀y ∈ B(0, 1)c,

∣∣∣∣
∂kK(y + tej)− ∂kK(y)

t
f(x− y)

∣∣∣∣ ≤
A

t(1 + |x− y|2N )

∫ t

0
|∂2

j,kK(y + sej)|ds

≤ A

(1 + |x− y|2N )(|y| − 1
2)N+2

,

so, by the dominated convergence theorem,
∫

B(0,1)c

∂kK(y + tej)− ∂kK(y)
t

f(x− y)dy →
t→0

∫

B(0,1)c

∂j,kK(y)f(x− y)dy.

For the second term, we compute by integration by parts since K ∈ K(RN ),
∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

dy =
∫

SN−1

K(y + tej)−K(y)
t

ykdy.

K being in K(RN ) once more, we get

∀y ∈ SN−1,

∣∣∣∣
K(y + tej)−K(y)

t
yk

∣∣∣∣ ≤
A

t

∫ t

0
|∂jK(y + sej)|ds ≤ A,

hence, by the dominated convergence theorem,
∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

dy →
t→0

∫

SN−1

∂jK(y)ykdy.

For the last term, we find
∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy

=
∫

|y|<2|t|

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy

+
∫

2|t|<|y|<1

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy.

On one hand, by assumption (ii) and since K ∈ K(RN ), we have
∣∣∣∣∣
∫

|y|<2|t|

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy

∣∣∣∣∣

≤ A

|t|
∫

|y|<2|t|

(
1

|y + tej |N− 1
2

+
1

|y|N− 1
2

)
|y|dy

≤ A

|t|

(∫

|y|<2|t|

dy

|y|N− 3
2

+
∫

|y|<2|t|

dy

|y + tej |N− 3
2

+
∫

|y|<2|t|

|t|dy
|y + tej |N− 1

2

)

≤ A
√
|t| →

t→0
0.
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0n the other hand, we obtain likewise for 2|t| < |y| < 1,
∣∣∣∣
∂kK(y + tej)− ∂kK(y)

t
(f(x− y)− f(x))

∣∣∣∣ ≤
A|y|
t

∫ t

0
|∂2

j,kK(y + sej)|dy

≤ A|y|
(|y| − |t|)N+ 1

2

≤ A

|y|N− 1
2

,

so, by the dominated convergence theorem,
∫

B(0,1)

∂kK(y + tej)− ∂kK(y)
t

(f(x− y)− f(x))dy →
t→0

∫

B(0,1)
∂2

j,kK(y)(f(x− y)− f(x))dy.

Finally, the function ∂kg is differentiable in direction xj and, by equation (47), its partial deriva-
tive ∂2

j,kg is given by formula (31). Moreover, the function ∂kg is actually of class C1 on RN .
Indeed, by formula (31), ∂2

j,kg is continuous on RN . It follows from the continuity of f , as-
sumptions (i) and (ii), the fact that K belongs to K(RN ) and a standard application of the
dominated convergence theorem.

We now turn to the proof of Lemma 5, which is similar.

Proof of Lemma 5. We begin by the proof of formula (32). Since f is a smooth function on RN

which satisfies assumptions (i) and (ii), we can state by standard Riesz operator theory,

∀x ∈ RN , g(x) =
∫

B(0,1)c

Rj,k(y)f(x− y)dy +
∫

B(0,1)
Rj,k(y)(f(x− y)− f(x))dy.

In particular, g is a continuous function on RN (which can also be deduced from a standard
application of the dominated convergence theorem thanks to the continuity of f and assumptions
(i) and (ii)). Therefore, assuming t ∈]− 1

2 ,
1
2 [\{0}, we compute

g(x+ tel)− g(x)
t

=
∫

B(0,1)c

Rj,k(y)
f(x+ tel − y)− f(x− y)

t
dy +

∫

B(0,1)
Rj,k(y)

(
f(x+ tel − y)− f(x− y)

t
− f(x+ tel)− f(x)

t

)
dy.

(48)

On one hand, by assumption (ii),

∀y ∈ B(0, 1)c,

∣∣∣∣Rj,k(y)
f(x+ tel − y)− f(x− y)

t

∣∣∣∣ ≤
A

t|y|N
∫ t

0
|∂lf(x+ sel − y)|ds

≤ A

|y|N (1 + |x− y|2N )
,

so, by the dominated convergence theorem,
∫

B(0,1)c

Rj,k(y)
f(x+ tel − y)− f(x− y)

t
dy →

t→0

∫

B(0,1)c

Rj,k(y)∂lf(x− y)dy.
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On the other hand, by assumption (iii),

∀y ∈ B(0, 1),
∣∣∣∣Rj,k(y)

(
f(x+ tel − y)− f(x− y)

t
− f(x+ tel)− f(x)

t

)∣∣∣∣

≤ A

t|y|N
∫ t

0
|∂lf(x+ sel − y)− ∂lf(x+ sel)| ds

≤ A

|y|N−1
sup

z∈RN

|d2f(z)|,

therefore, by the dominated convergence theorem,
∫

B(0,1)
Rj,k(y)

(
f(x+ tel − y)− f(x− y)

t
− f(x+ tel)− f(x)

t

)
dy

→
t→0

∫

B(0,1)
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy.

Thus, the function g is differentiable in direction xl and, by equation (48), its partial derivative
∂lg is given by

∀x ∈ RN , ∂lg(x) =
∫

B(0,1)c

Rj,k(y)∂lf(x− y)dy +
∫

B(0,1)
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy. (49)

Now, we integrate by parts the first term of the right member:
∫

B(0,1)c

Rj,k(y)∂lf(x− y)dy =
∫

B(0,1)c

∂lRj,k(y)f(x− y)dy +
∫

SN−1

Rj,k(y)ylf(x− y)dy. (50)

It can be made rigorously by integrating by parts on B(0, R) \ B(0, 1) for some large R and
taking the limit R→ +∞, using assumptions (i) and (ii). Likewise, assumption (iii) yields for
the second term

∫

B(0,1)
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy = lim

ε→0

∫

ε<|y|<1
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy.

However, we find by integrating by parts,
∫

ε<|y|<1
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy

=
∫

ε<|y|<1
Rj,k(y)∂lf(x− y)dy

=
∫

ε<|y|<1
∂lRj,k(y)f(x− y)dy +

∫

S(0,ε)
Rj,k(y)

yl

ε
f(x− y)dy −

∫

SN−1

Rj,k(y)ylf(x− y)dy

=
∫

ε<|y|<1
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy +

∫

S(0,ε)
Rj,k(y)

yl

ε
(f(x− y)− f(x)

+ y.∇f(x))dy −
∫

SN−1

Rj,k(y)yl(f(x− y)− f(x) + y.∇f(x))dy.

Now, we remark by assumption (iii)

∀y ∈ B(0, 1), |∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))| ≤ A

|y|N−1
sup

z∈RN

|d2f(z)|,
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so,
∫

ε<|y|<1
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy

→
ε→0

∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy.

We also notice by assumption (iii)

∀y ∈ S(0, ε), |Rj,k(y)yl(f(x− y)− f(x) + y.∇f(x))| ≤ A

εN−3
sup

z∈RN

|d2f(z)|,

therefore,
1
ε

∫

S(0,ε)
Rj,k(y)yl(f(x− y)− f(x) + y.∇f(x))dy →

ε→0
0.

Finally, it leads to
∫

B(0,1)
Rj,k(y)(∂lf(x− y)− ∂lf(x))dy =

∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy

−
∫

SN−1

Rj,k(y)yl(f(x− y)− f(x) + y.∇f(x))dy.
(51)

Finally, by combining equations (49), (50) and (51), the partial derivative ∂lg is given by formula
(32). Thus, the function g is actually of class C1 on RN . Indeed, by formula (32), ∂lg is
continuous on RN . By a standard application of the dominated convergence theorem, it follows
from the smoothness of f and assumptions (i), (ii) and (iii).

We now turn to formula (33) and we assume again that t ∈] − 1
2 ,

1
2 [\{0}. Since f satisfies

assumptions (i), (ii) and (iii), ∂lg is continuous on RN and satisfies formula (32),

∀x ∈ RN , ∂lg(x) =
∫

B(0,1)c

∂lRj,k(y)f(x− y)dy +
∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x)

+ y.∇f(x))dy +
∫

SN−1

Rj,k(y)yl(f(x)− y.∇f(x))dy.

Hence,

∂lg(x+ tem)− ∂lg(x)
t

=
∫

B(0,1)c

∂lRj,k(y)
f(x+ tem − y)− f(x− y)

t
dy +

∫

B(0,1)
∂lRj,k(y)

(
f(x+ tem − y)− f(x− y)

t
− f(x+ tem)− f(x)

t
+ y.

∇f(x+ tem)−∇f(x)
t

)
dy +

∫

SN−1

Rj,k(y)
(
f(x+ tem)− f(x)

t

−y.∇f(x+ tem)−∇f(x)
t

)
yldy.

(52)

On one hand, by assumption (ii),

∀y ∈ B(0, 1)c,

∣∣∣∣∂lRj,k(y)
f(x+ tem − y)− f(x− y)

t

∣∣∣∣ ≤
A

t|y|N+1

∫ t

0
|∂mf(x+ sem − y)|ds

≤ A

|y|N+1(1 + |x− y|2N )
,
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so, by the dominated convergence theorem,
∫

B(0,1)c

∂lRj,k(y)
f(x+ tem − y)− f(x− y)

t
dy →

t→0

∫

B(0,1)c

∂lRj,k(y)∂mf(x− y)dy.

On the other hand, assumption (iv) yields for every y ∈ B(0, 1),
∣∣∣∣
∂lRj,k(y)

t

(
f(x+ tem − y)− f(x− y)− f(x+ tem) + f(x) + y.(∇f(x+ tem)−∇f(x))

)∣∣∣∣

≤ A

t|y|N+1

∫ t

0
|∂mf(x+ sem − y)− ∂mf(x+ sem) + y.∇∂mf(x+ sem)|ds

≤ A

|y|N−1
sup

z∈RN

|d3f(z)|,

hence, by the dominated convergence theorem,
∫

B(0,1)c

∂lRj,k(y)
t

(
f(x+ tem − y)− f(x− y)− f(x+ tem) + f(x) + y.(∇f(x+ tem)

−∇f(x))
)
dy →

t→0

∫

B(0,1)c

∂lRj,k(y)(∂mf(x− y)− ∂mf(x) + y.∇∂mf(x))dy.

Finally, f is in C∞(RN ), which gives
∫

SN−1

Rj,k(y)yl

(
f(x+ tem)− f(x)

t
− y.

∇f(x+ tem)−∇f(x)
t

)
dy

→
t→0

∫

SN−1

ylRj,k(y)(∂mf(x)− y.∇∂mf(x))dy.

Thus, the function ∂lg is differentiable in direction xm and, by equation (52), its partial derivative
∂2

l,mg is given by

∀x ∈ RN , ∂2
l,mg(x) =

∫

B(0,1)c

∂lRj,k(y)∂mf(x− y)dy +
∫

B(0,1)
∂lRj,k(y)(∂mf(x− y)

− ∂mf(x) + y.∇∂mf(x))dy +
∫

SN−1

Rj,k(y)yl(∂mf(x)− y.∇∂mf(x))dy.

(53)

Now, we integrate by parts the first term of the right member:
∫

B(0,1)c

∂lRj,k(y)∂mf(x− y)dy =
∫

B(0,1)c

∂2
l,mRj,k(y)f(x− y)dy +

∫

SN−1

∂lRj,k(y)ym

f(x− y)dy.
(54)

Similarly to equation (50), it can be made rigorously by integrating by parts on B(0, R)\B(0, 1)
for some large R and taking the limit R → +∞, using assumptions (i) and (ii). Likewise,
assumption (iv) yields

∫

B(0,1)
∂lRj,k(y)(∂mf(x− y)− ∂mf(x) + y.∇∂mf(x))dy

= lim
ε→0

∫

ε<|y|<1
∂lRj,k(y)(∂mf(x− y)− ∂mf(x) + y.∇∂mf(x))dy.

24



However, we compute by integrating by parts
∫

ε<|y|<1
∂lRj,k(y)(∂mf(x− y)− ∂mf(x) + y.∇∂mf(x))dy

=
∫

ε<|y|<1
∂2

l,mRj,k(y)f(x− y)dy −
∫

SN−1

∂lRj,k(y)ymf(x− y)dy +
∫

S(0,ε)
∂lRj,k(y)

ym

ε

f(x− y)dy −
∫

ε<|y|<1
∂lRj,k(y)dy ∂mf(x) +

∫

ε<|y|<1
∂lRj,k(y)y.∇∂mf(x)dy

=
∫

ε<|y|<1
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy

−
∫

SN−1

∂lRj,k(y)ym(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy

+
∫

S(0,ε)
∂lRj,k(y)

ym

ε
(f(x− y)− f(x) + y.∇f(x)− 1

2
d2f(x)(y, y))dy.

We then notice by assumption (iv) for every y ∈ B(0, 1),

|∂2
l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1

2
d2f(x)(y, y))| ≤ A

|y|N−1
sup

z∈RN

|d3f(z)|,

therefore,
∫

ε<|y|<1
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy

→
ε→0

∫

B(0,1)
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy.

We also remark by assumption (iv) for every y ∈ S(0, ε),

|∂lRj,k(y)ym(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))| ≤ A

εN−3
sup

z∈RN

|d3f(z)|,

which gives

1
ε

∫

S(0,ε)
∂lRj,k(y)ym(f(x− y)− f(x) + y.∇f(x)− 1

2
d2f(x)(y, y))dy →

ε→0
0.

Thus, we find
∫

B(0,1)
∂lRj,k(y)(∂mf(x− y)− ∂mf(x) + y.∇∂mf(x))dy

=
∫

B(0,1)
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy

−
∫

SN−1

∂lRj,k(y)ym(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy.

(55)

Finally, by equations (53), (54) and (55), the partial derivative ∂2
l,mg is given by formula (33).

Thus, the function g is actually of class C2 on RN . Indeed, by formula (33), ∂2
l,mg is continuous

on RN : it follows from the smoothness of f , assumptions (i), (ii), (iii) and (iv), and a standard
application of the dominated convergence theorem.

We then complete the proof of Proposition 8.
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Proof of Proposition 8. By formulae (19) and (20), and Proposition 1, the functions F and G
are C∞ on RN and equal to

{
F = |∇η|2

2(1−η) + 2(1− η)|∇(ψθ)|2 + 2η2 − 2cη∂1(ψθ),
G = η∇(ψθ),

on a neighbourhood of infinity, so, by Proposition 2, they satisfy all the assumptions of Lemmas
4 and 5.

Likewise, by Proposition 3, the kernels K0, Kj and Lj,k are in K(RN ). Formula (44) is then
a consequence of equation (21) and Lemma 4, while formulae (45) and (46) follow from invoking
equation (24) and Lemmas 4 and 5.

Remark 12. It seems possible to compute similar formulae for higher derivatives of the functions
η and ψθ: since it is useless here, we are not going to investigate this point any further. However,
it is probably a good way to prove the sharp decay of higher derivatives, i.e. to show that the
functions ∂αη, ∂α∇(ψθ) and ∂α∇v are in M∞

N+|α|(R
N ), at least in the case where |α| ≤ N .

1.2 Sharp decay of the functions d2η, d2θ and d3θ

We now infer Theorem 6 from Proposition 8. We improve the asymptotic decay rate of the
functions d2η, d2θ, d2v and d3θ by the argument mentioned in the introduction. We first apply
it in the following lemma.

Lemma 8. Let 1 ≤ j, k ≤ N and K ∈ K(RN ). Consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),

(ii) ∇f ∈ L∞(RN )N ∩M∞
2N (RN )N .

Then,
∂2

j,k(K ∗ f) ∈M∞
N+2(RN ).

Proof. Let g = K ∗ f . By assumptions (i) and (ii), Lemma 4 yields

∀x ∈ RN , ∂2
j,kg(x) =

∫

B(0,1)c

∂2
j,kK(y)f(x− y)dy +

∫

B(0,1)
∂2

j,kK(y)(f(x− y)− f(x))dy

+
(∫

SN−1

∂jK(y)ykdy

)
f(x).

By assumption (i) and since K ∈ K(RN ), the first term satisfies

|x|N+2

∣∣∣∣∣
∫

B(0,1)c

∂2
j,kK(y)f(x− y)dy

∣∣∣∣∣ ≤ A

(∫

B(0,1)c

|y|N+2|∂2
j,kK(y)||f(x− y)|dy

+
∫

B(0,1)c

|∂2
j,kK(y)||x− y|N+2|f(x− y)|dy

)

≤ A(‖∂2
j,kK‖M∞

N+2(RN )‖f‖L1(RN )

+ ‖∂2
j,kK‖L1(B(0,1)c)‖f‖

N+2
2N

M∞
N+2(RN )

‖f‖
N−2
2N

L∞(RN )
) ≤ A.
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By assumption (ii) and since K ∈ K(RN ), the second term verifies

|x|N+2

∣∣∣∣∣
∫

B(0,1)
∂2

j,kK(y)(f(x− y)− f(x))dy

∣∣∣∣∣ ≤ A|x|N+2

∫

B(0,1)
|y||∂2

j,kK(y)|dy

sup
z∈B(x,1)

|∇f(z)|

≤ A
|x|N+2

1 + |x|2N
≤ A,

and likewise, by assumption (i) and since K ∈ K(RN ),

|x|N+2

∣∣∣∣
∫

SN−1

∂jK(y)ykdy

∣∣∣∣ |f(x)| ≤ A
|x|N+2

1 + |x|2N
≤ A.

Thus, the function g belongs to M∞
N+2(RN ).

We next prove a similar lemma for the composed Riesz kernels Rj,k.

Lemma 9. Let 1 ≤ j, k, l,m ≤ N and consider a function f ∈ C∞(RN ) such that

(i) f ∈ L∞(RN ) ∩M∞
2N (RN ),

(ii) ∇f ∈ L∞(RN ) ∩M∞
2N (RN ),

(iii) d2f ∈ L∞(RN ) ∩M∞
2N (RN ),

Then,
∂l(Rj,k ∗ f) ∈M∞

N+1(RN ).

Moreover, if f also satisfies

(iv) d3f ∈ L∞(RN ) ∩M∞
2N (RN ),

then,
∂2

l,m(Rj,k ∗ f) ∈M∞
N+2(RN ).

Proof. Let g = Rj,k ∗ f . On one hand, by assumptions (i), (ii) and (iii), Lemma 5 leads to

∀x ∈ RN , ∂lg(x) =
∫

B(0,1)c

∂lRj,k(y)f(x− y)dy +
∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x)

+ y.∇f(x))dy +
∫

SN−1

Rj,k(y)yl(f(x)− y.∇f(x))dy.

By assumption (i), the first term verifies

|x|N+1

∣∣∣∣∣
∫

B(0,1)c

∂lRj,k(y)f(x− y)dy

∣∣∣∣∣ ≤ A

∫

B(0,1)c

(|y|N+1|∂lRj,k(y)||f(x− y)|

+ |∂lRj,k(y)||x− y|N+1|f(x− y)|)dy

≤ A

(∫

RN

|f(t)|dt+
∫

B(0,1)c

|∂lRj,k(y)|dy
)
≤ A.
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By assumption (iii), the second term satisfies

|x|N+1

∣∣∣∣∣
∫

B(0,1)
∂lRj,k(y)(f(x− y)− f(x) + y.∇f(x))dy

∣∣∣∣∣

≤ A|x|N+1

∫

B(0,1)
|y|2|∂lRj,k(y)|dy sup

z∈B(x,1)
|d2f(z)|

≤ A
|x|N+1

1 + |x|2N
≤ A,

and likewise, by assumptions (i) and (ii),

|x|N+1

∣∣∣∣
∫

SN−1

Rj,k(y)yl(f(x)− y.∇f(x))dy
∣∣∣∣ ≤ A

|x|N+1

1 + |x|2N
≤ A.

Hence, the derivative ∂l(Rj,k ∗ f) is in M∞
N+1(RN ).

On the other hand, by assumptions (i), (ii), (iii) and (iv), Lemma 5 also gives

∀x ∈ RN , ∂2
l,mg(x) =

∫

B(0,1)c

∂2
l,mRj,k(y)f(x− y)dy +

∫

B(0,1)
∂2

l,mRj,k(y)(f(x− y)− f(x)

+ y.∇f(x)− 1
2
d2f(x)(y, y))dy +

∫

SN−1

Rj,k(y)yl(∂mf(x)

− y.∇∂mf(x))dy +
∫

SN−1

∂lRj,k(y)ym(f(x)− y.∇f(x)

+
1
2
d2f(x)(y, y))dy.

Likewise, by assumption (i), the first term satisfies

|x|N+2

∣∣∣∣∣
∫

B(0,1)c

∂2
l,mRj,k(y)f(x− y)dy

∣∣∣∣∣ ≤ A

∫

B(0,1)c

(|y|N+2|∂2
l,mRj,k(y)||f(x− y)|

+ |∂2
l,mRj,k(y)||x− y|N+2|f(x− y)|)dy

≤ A

(∫

RN

|f(t)|dt+
∫

B(0,1)c

|∂2
l,mRj,k(y)|dy

)
≤ A.

For the second term, assumption (iv) yields

|x|N+2

∣∣∣∣∣
∫

B(0,1)
∂2

l,mRj,k(y)(f(x− y)− f(x) + y.∇f(x)− 1
2
d2f(x)(y, y))dy

∣∣∣∣∣

≤ A|x|N+2

∫

B(0,1)
|y|3|∂2

l,mRj,k(y)|dy sup
z∈B(x,1)

|d3f(z)|

≤ A
|x|N+2

1 + |x|2N
≤ A,

while for the third term, assumptions (ii) and (iii) give

|x|N+2

∣∣∣∣
∫

SN−1

Rj,k(y)yl(∂mf(x)− y.∇∂mf(x))dy
∣∣∣∣ ≤ A

|x|N+2

1 + |x|2N
≤ A,

and likewise, for the last term, by assumptions (i), (ii) and (iii),

|x|N+2

∣∣∣∣
∫

SN−1

∂lRj,k(y)ym(f(x)− y.∇f(x) +
1
2
d2f(x)(y, y))dy

∣∣∣∣ ≤ A
|x|N+2

1 + |x|2N
≤ A.

Thus, the function ∂2
l,m(Rj,k ∗ f) belongs to M∞

N+2(RN ).
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Finally, Theorem 6 follows from Lemmas 8 and 9.

Proof of Theorem 6. Equation (21) writes

η = K0 ∗ F + 2c
N∑

j=1

Kj ∗Gj .

However, by Proposition 3, the kernels K0 and Kj are in K(RN ), whereas by formulae (19) and
(20), and Propositions 1 and 2, the functions F and G satisfy all the assumptions of Lemma 8.
Thus, the function d2η belongs to M∞

N+2(RN ) by Lemma 8.

Likewise, equation (24) states

∂j(ψθ) =
c

2
Kj ∗ F + c2

N∑

k=1

Lj,k ∗Gk +
N∑

k=1

Rj,k ∗Gk.

Then, Propositions 1, 2 and 3, and formulae (19) and (20) yield for every l ∈ {1, . . . , N} and
x ∈ RN ,

|x|N+1|∂l(Kj ∗ F )(x)| =|x|N+1|(∂lKj) ∗ F (x)|
≤A

∫

RN

(|y|N+1|∂lKj(y)||F (x− y)|+ |∂lKj(y)|

|x− y|N+1|F (x− y)|)dy

≤A
(∫

RN

|F (t)|dt+
∫

RN

|∂lKj(y)|dy
)
≤ A.

Therefore, the function ∂l(Kj ∗F ) is in M∞
N+1(RN ). Likewise, the functions ∂l(Lj,k ∗Gk) belong

to M∞
N+1(RN ), so, since the functions Gk satisfy all the assumptions of Lemma 9, it follows from

this lemma that the function d2(ψθ) also belongs to M∞
N+1(RN ).

The proof is identical for the function d3(ψθ) by Lemmas 8 and 9, and formula (24), so, we
omit it.

Finally, by Proposition 1, the function d2v is C∞ on RN and equal to

∂2
j,kv =

(√
1− η(i∂2

j,kθ − ∂jθ∂kθ)−
∂2

j,kη + i(∂jθ∂kη + ∂kθ∂jη)

2
√

1− η
− ∂jη∂kη

4(1− η)
3
2

)
eiθ

on a neighbourhood of infinity. Since the functions ∇η, ∇(ψθ), d2η and d2(ψθ) are bounded and
belong to respectively M∞

N+1(RN ), M∞
N (RN ), M∞

N+2(RN ) and M∞
N+1(RN ), and since η converges

to 0 at infinity by Proposition 2, d2v belongs to M∞
N+1(RN ).

Before turning to the first order development at infinity of the function v, we establish
Corollary 2.

Proof of Corollary 2. Corollary 2 is a consequence of the superlinear nature of F and G. By
formulae (19) and (20), and Proposition 1, the functions F and G are C∞ on RN and equal to

{
F = |∇η|2

2(1−η) + 2(1− η)|∇θ|2 + 2η2 − 2cη∂1θ

G = η∇θ
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on B(0, 3R0)c. Thus, we compute for every x ∈ B(0, 3R0)c,

|x|2N (|F (x)|+ |G(x)|) ≤A|x|2N (|∇η(x)|2 + |∇θ(x)|2 + |η(x)|2 + |η(x)||∇θ(x)|),

|x|2N+1(|∇F (x)|+ |∇G(x)|) ≤A|x|2N+1(|d2η(x)||∇η(x)|+ |∇η(x)|3 + |η(x)||∇η(x)|
+|∇η(x)||∇θ(x)|2 + |∇θ(x)||d2θ(x)|+ |∇η(x)||∇θ(x)|
+|η(x)||d2θ(x)|),

|x|2N+2|d2G(x)| ≤A|x|2N+2(|d2η(x)||∇θ(x)|+ |∇η(x)||d2θ(x)|
+ |η(x)||d3θ(x)|).

Corollary 2 then follows from Proposition 2 and Theorem 6.

2 Asymptotic development at first order

Now, we consider the existence of a first order asymptotic expansion for the subsonic travelling
waves of finite energy. By the method mentioned in the introduction, we first deduce the
pointwise convergence of the Gross-Pitaevskii kernels, then, the pointwise convergence of all the
convolution integrals which appear in formulae (21) and (24). We finish the proof of Theorem 1
by showing the convergences above are actually uniform on the sphere SN−1 and by computing
a partial differential equation for the first order terms of this asymptotic expansion.

2.1 Pointwise convergence of Gross-Pitaevskii kernels

We first prove Theorem 5, i.e. the pointwise convergence of the Gross-Pitaevskii kernels K0, Kj

and Lj,k. As claimed previously in the introduction, it follows from the form of their Fourier
transforms through Lemma 1, whose proof is mentioned below.

Proof of Lemma 1. Consider some integer j ∈ {1, . . . , N}. The Fourier transform of K belongs
to K̂(RN ). Therefore, the function f given by

∀x ∈ RN , f(x) = (−ixj)N−1K(x),

is continuous on RN . Indeed, its Fourier transform

f̂ = ∂N−1
j K̂

belongs to L1(RN ). Moreover, if g ∈ S(RN ), we compute

< xjf, ĝ >=< f, xj ĝ >= −i < f, ∂̂jg >= −i < f̂ , ∂jg >,

so, f̂ being in L1(RN ), we can write

< xjf, ĝ >= −i
∫

RN

f̂(ξ)∂jg(ξ)dξ.

Then, we deduce from an integration by parts that for every λ > 0,

< xjf, ĝ > = i

∫

B(0,λ)c

∂j f̂(ξ)g(ξ)dξ + i

∫

B(0,λ)
∂j f̂(ξ)(g(ξ)− g(0))dξ

+
ig(0)
λ

∫

S(0,λ)
ξj f̂(ξ)dξ.
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However, g is in S(RN ), therefore,

g(ξ) =
1

(2π)N

∫

RN

ĝ(x)eix.ξdx,

which yields

< xjf, ĝ > =
i

(2π)N

∫

RN

ĝ(x)

(∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ

+
1
λ

∫

S(0,λ)
ξj f̂(ξ)dξ

)
dx.

Therefore, by standard duality, the tempered distribution xjf is equal to the tempered distri-
bution Ψ given for every x ∈ RN by

Ψ(x) =
i

(2π)N

(∫

B(0,λ)c

∂j f̂(ξ)eix.ξdξ +
∫

B(0,λ)
∂j f̂(ξ)(eix.ξ − 1)dξ +

1
λ

∫

S(0,λ)
ξj f̂(ξ)dξ

)

=
i

(2π)N

(∫

B(0,λ)c

∂N
j K̂(ξ)eix.ξdξ +

∫

B(0,λ)
∂N

j K̂(ξ)(eix.ξ − 1)dξ

+
1
λ

∫

S(0,λ)
ξj∂

N−1
j K̂(ξ)dξ

)
.

Indeed, Ψ is a tempered distribution because, since K̂ is in K̂(RN ), Ψ belongs to L1
loc(RN ) and

satisfies
∀x ∈ RN , |Ψ(x)| ≤ A(1 + |x|).

Moreover, since K̂ is in K̂(RN ) once more, by a standard application of the dominated conver-
gence theorem, Ψ is also continuous on RN . Thus, the function x 7→ xjf(x) = xj(−ixj)N−1K(x)
is continuous on RN and verifies for every x ∈ RN ,

xj(−ixj)N−1K(x) =
i

(2π)N

(∫

B(0,λ)c

∂N
j K̂(ξ)eix.ξdξ +

∫

B(0,λ)
∂N

j K̂(ξ)(eix.ξ − 1)dξ

+
1
λ

∫

S(0,λ)
ξj∂

N−1
j K̂(ξ)dξ

)
.

Then, it only remains to choose λ = 1
R and x = Rσ − y to get formula (29).

Theorem 5 is then a consequence of Lemma 1.

Proof of Theorem 5. Let 1 ≤ j ≤ N and let us first make the additional assumption

α = 0.

We will remove it later. The function K̂ is a rational fraction only singular at the origin, so
all its derivatives are also rational fractions only singular at the origin. Thus, we can state for
every i ∈ {0, 1, 2},

∂N+i−1
j K̂ =

di∑
k=0

Pk,i

d′i∑
k=0

Qk,i

(56)

where

31



• the functions Pk,i and Qk,i are homogeneous polynomial functions either equal to 0 or of
degree k.

• the polynomial functions Pi =
di∑

k=0

Pk,i and Qi =
d′i∑
k=0

Qk,i are relatively prime.

• the polynomial function Qi does not vanish on RN \ {0}.

Moreover, consider ξ ∈ RN \ {0} and denote

• l(ξ) =
{

min{k ∈ {0, . . . , di}, Pk,i(ξ) 6= 0}, if ∃k ∈ {0, . . . , di}, Pk,i(ξ) 6= 0,
+∞, otherwise,

• l′(ξ) = min{k ∈ {0, . . . , d′i}, Qk,i(ξ) 6= 0}.

The functions l and l′ are well-defined on RN \ {0}, and we can set

∀ξ ∈ RN \ {0}, Ri(ξ) =

{
δl′(ξ),l(ξ)+N−1+i

Pl(ξ),i(ξ)

Ql′(ξ),i(ξ)
, if l(ξ) 6= +∞,

0, otherwise.

Now, we claim

Claim 1. The function Ri belongs to M∞
N+i−1(RN ) and satisfies

∀ξ ∈ RN \ {0}, 1
RN+i−1

∂N+i−1
j K̂

(
ξ

R

)
→

R→+∞
Ri(ξ). (57)

Proof of Claim 1. The case l(ξ) = +∞ being straightforward since

∂N+i−1
j K̂

(
ξ

R

)
=

di∑
k=0

R−kPk,i(ξ)

d′i∑
k=0

RN+i−1−kQk,i(ξ)
= 0 = Ri(ξ),

consider R > 0 and ξ ∈ RN \ {0} such that

l(ξ) 6= +∞.

Formula (56) becomes

1
RN+i−1

∂N+i−1
j K̂

(
ξ

R

)
=

di∑
k=0

R−kPk,i(ξ)

d′i∑
k=0

RN+i−1−kQk,i(ξ)
∼

R→+∞
Pl(ξ),i(ξ)

RN+i−1−l′(ξ)+l(ξ)Ql′(ξ),i(ξ)
.

However, the function K̂ is in K̂(RN ), which means in particular that

∀ξ ∈ RN \ {0},
∣∣∣∣

1
RN+i−1

∂N+i−1
j K̂

(
ξ

R

)∣∣∣∣ ≤
A

|ξ|N+i−1
. (58)

Thus, we first deduce

1
RN+i−1

∂N+i−1
j K̂

(
ξ

R

)
→

R→+∞
δN+i−1+l(ξ),l′(ξ)

Pl(ξ),i(ξ)
Ql′(ξ),i(ξ)

= Ri(ξ),
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and secondly, by taking the limit R→ +∞ in inequality (58),

|Ri(ξ)| ≤ A

|ξ|N+i−1
,

i.e. the function Ri belongs to M∞
N+i−1(RN ).

Now, we turn back to the proof of Theorem 5. Consider (σ, y) ∈ SN−1 × RN such that

σj 6= 0

and remark once again that the function K̂ is in K̂(RN ). By Lemma 1, we can state for every
positive number R sufficiently large

RNK(Rσ − y) =
iN

(2π(σj − yj

R ))N

(∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ +

∫

B(0, 1
R

)
∂N

j K̂(ξ)

(eiξ.(Rσ−y) − 1)dξ +R

∫

S(0, 1
R

)
ξj∂

N−1
j K̂(ξ)eiξ.(Rσ−y)dξ

)
.

(59)

Our goal is to prove the convergence of each term of the right member towards a bounded
measurable function independent of y.

Step 1. The first term of the right member of equation (59) satisfies

∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞
− 1
iσj

(∫

B(0,1)c

R2(ξ)eiξ.σdξ +
∫

SN−1

ξjR1(ξ)eiξ.σdξ

)
.

Indeed, for every λ > 1
R ,

∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ = lim

λ→+∞

∫
1
R

<|ξ|<λ
∂N

j K̂(ξ)eiξ.(Rσ−y)dξ.

Moreover, by integrating by parts,
∫

1
R

<|ξ|<λ
∂N

j K̂(ξ)eiξ.(Rσ−y)dξ =
1

i(Rσj − yj)

∫
1
R

<|ξ|<λ
∂N

j K̂(ξ)∂j(eiξ.(Rσ−y))dξ

=
1

i(Rσj − yj)

(
−

∫
1
R

<|ξ|<λ
∂N+1

j K̂(ξ)eiξ.(Rσ−y)dξ

+
1
λ

∫

S(0,λ)
ξj∂

N
j K̂(ξ)eiξ.(Rσ−y)dξ −R

∫

S(0, 1
R

)
ξj

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ

)
.

However, K̂ is in K̂(RN ), therefore,
∫

1
R

<|ξ|<λ
∂N+1

j K̂(ξ)eiξ.(Rσ−y)dξ →
λ→+∞

∫

B(0, 1
R

)c

∂N+1
j K̂(ξ)eiξ.(Rσ−y)dξ,

while ∣∣∣∣∣
1
λ

∫

S(0,λ)
ξj∂

N
j K̂(ξ)eiξ.(Rσ−y)dξ

∣∣∣∣∣ ≤
AλN−1

λN+2
→

λ→+∞
0.
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Thus, we obtain

∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ =

1
i(Rσj − yj)

(
−

∫

B(0, 1
R

)c

∂N+1
j K̂(ξ)eiξ.(Rσ−y)dξ

−R
∫

S(0, 1
R

)
ξj∂

N
j K̂(ξ)eiξ.(Rσ−y)dξ

)
.

(60)

On one hand, the first term verifies

1
R

∫

B(0, 1
R

)c

∂N+1
j K̂(ξ)eiξ.(Rσ−y)dξ =

1
RN+1

∫

B(0,1)c

∂N+1
j K̂

(
ξ

R

)
eiξ.(σ− y

R
)dξ.

However, by assertion (57),

1
RN+1

∂N+1
j K̂

(
ξ

R

)
→

R→+∞
R2(ξ),

and, since K̂ ∈ K̂(RN ),

∀ξ ∈ B(0, 1)c,

∣∣∣∣
1

RN+1
∂N+1

j K̂

(
ξ

R

)
eiξ.(σ− y

R
)

∣∣∣∣ ≤
A

|ξ|N+1
,

hence, by the dominated convergence theorem,

1
R

∫

B(0, 1
R

)c

∂N+1
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞

∫

B(0,1)c

R2(ξ)eiξ.σdξ.

On the other hand, the second terms writes
∫

S(0, 1
R

)
ξj∂

N
j K̂(ξ)eiξ.(Rσ−y)dξ =

1
RN

∫

SN−1

ξj∂
N
j K̂

(
ξ

R

)
eiξ.(σ− y

R
)dξ.

Likewise, by assertion (57),
1
RN

∂N
j K̂

(
ξ

R

)
→

R→+∞
R1(ξ).

and, since K̂ ∈ K̂(RN ),

∀ξ ∈ SN−1,

∣∣∣∣
ξj
RN

∂N
j K̂

(
ξ

R

)
eiξ.(σ− y

R
)

∣∣∣∣ ≤ A,

which gives by the dominated convergence theorem,
∫

S(0, 1
R

)
ξj∂

N
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞

∫

SN−1

ξjR1(ξ)eiξ.σdξ.

In conclusion, equation (60) yields

∫

B(0, 1
R

)c

∂N
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞
− 1
iσj

(∫

B(0,1)c

R2(ξ)eiξ.σdξ +
∫

SN−1

ξjR1(ξ)eiξ.σdξ

)
,

which ends the proof of Step 1.
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Step 2. The second term of the right member of equation (59) satisfies
∫

B(0, 1
R

)
∂N

j K̂(ξ)(eiξ.(Rσ−y) − 1)dξ →
R→+∞

∫

B(0,1)
R1(ξ)(eiξ.σ − 1)dξ.

Indeed, we have
∫

B(0, 1
R

)
∂N

j K̂(ξ)(eiξ.(Rσ−y) − 1)dξ =
1
RN

∫

B(0,1)
∂N

j K̂

(
ξ

R

)
(eiξ.(σ− y

R
) − 1)dξ.

Likewise, by assertion (57),
1
RN

∂N
j K̂

(
ξ

R

)
→

R→+∞
R1(ξ),

and, since K̂ ∈ K̂(RN ), we have for every R > 2|y|,

∀ξ ∈ B(0, 1),
∣∣∣∣

1
RN

∂N
j K̂

(
ξ

R

)
(eiξ.(σ− y

R
) − 1)

∣∣∣∣ ≤
A

|ξ|N
∣∣∣ξ.(σ − y

R
)
∣∣∣ ≤ A

|ξ|N−1
.

Hence, the dominated convergence theorem gives
∫

B(0, 1
R

)
∂N

j K̂(ξ)(eiξ.(Rσ−y) − 1)dξ →
R→+∞

∫

B(0,1)
R1(ξ)(eiξ.σ − 1)dξ,

which is the desired result.

Step 3. The last term of the right member of equation (59) verifies

R

∫

S(0, 1
R

)
ξj∂

N−1
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞

∫

SN−1

ξjR0(ξ)eiξ.σdξ.

Indeed, we compute

R

∫

S(0, 1
R

)
ξj∂

N−1
j K̂(ξ)eiξ.(Rσ−y)dξ =

1
RN−1

∫

SN−1

ξj∂
N−1
j K̂

(
ξ

R

)
eiξ.(σ− y

R
)dξ.

However, by assertion (57),

1
RN−1

∂N−1
j K̂

(
ξ

R

)
→

R→+∞
R0(ξ),

and, since K̂ ∈ K̂(RN ),

∀ξ ∈ SN−1,

∣∣∣∣
1

RN−1
ξj∂

N−1
j K̂

(
ξ

R

)
eiξ.(σ− y

R
)

∣∣∣∣ ≤ A,

which yields by the dominated convergence theorem,

R

∫

S(0, 1
R

)
ξj∂

N−1
j K̂(ξ)eiξ.(Rσ−y)dξ →

R→+∞

∫

SN−1

ξjR0(ξ)eiξ.σdξ.

Finally, by equation (59), and Steps 1, 2 and 3, we conclude

RNK(Rσ − y) →
R→+∞

K∞(σ),
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where K∞ is given by

K∞(σ) =
iN

(2πσj)N

(∫

B(0,1)
R1(ξ)(eiξ.σ − 1)dξ +

∫

SN−1

ξjR0(ξ)eiξ.σdξ

− 1
iσj

(∫

B(0,1)c

R2(ξ)eiξ.σdξ +
∫

SN−1

ξjR1(ξ)eiξ.σdξ

))
.

(61)

It then only remains to show that the function K∞ is uniformly bounded on the sphere SN−1.
Indeed, up to choose another integer j ∈ {1, . . . , N}, we can suppose that

1√
N
≤ σj ≤ 1.

We then deduce from Claim 1 and from this additional assumption that

|K∞(σ)| ≤ AN

(∫

B(0,1)

dξ

|ξ|N−1
+

∫

SN−1

dξ

|ξ|N−2
+

∫

B(0,1)c

dξ

|ξ|N+1
+

∫

SN−1

dξ

|ξ|N−1

)
,

so, the function K∞ is uniformly bounded on SN−1.

Now, we complete the proof of Theorem 5 by considering the case

α 6= 0.

We first compute
∂̂αK(ξ) = i|α|ξαK̂(ξ).

We then consider β ∈ NN such that |β| = |α| and denote Lβ, the tempered distribution of
Fourier transform

L̂β = ∂β ∂̂αK.

We claim that the function L̂β belongs to K̂(RN ). Indeed, by Leibnitz’s formula,

∀ξ ∈ RN \ {0}, L̂β(ξ) = ∂β(i|α|ξαK̂(ξ)) =
∑

0≤γ≤β

Aγ,β∂
γ(ξα)∂β−γK̂(ξ),

so, since K̂ ∈ K̂(RN ),

(1 + |ξ|2)|L̂β(ξ)| ≤ A(1 + |ξ|2)
∑

0≤γ≤β

|ξ||α|−|γ|
(1 + |ξ|2)|ξ||β|−|γ| ≤ A.

Therefore, the function L̂β is in L∞(RN ) ∩ M∞
2 (RN ). Likewise, a straightforward inductive

argument for the derivatives of L̂β yields that L̂β is a rational fraction which is only singular at
the origin and belongs to K̂(RN ). By the proof ahead for the case α = 0, there exists a bounded
measurable function Lβ,∞ such that

RNLβ(Rσ − y) →
R→+∞

Lβ,∞(σ).

Moreover, we compute
Lβ(x) = (−i)|β|xβ∂αK(x),

so,
RN (−i)|β|(Rσ − y)β∂αK(Rσ − y) →

R→+∞
Lβ,∞(σ),
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and,
RN+|α|σβ∂αK(Rσ − y) →

R→+∞
i|α|Lβ,∞(σ).

However, we can always choose β such that

|σβ| ≥ 1

N
|α|
2

,

so, ∣∣∣∣∣
i|α|

σβ
Lβ,∞(σ)

∣∣∣∣∣ ≤ N
|α|
2 max
|β|=|α|

‖Lβ,∞‖L∞(SN−1).

Thus, there is a bounded measurable function Kα∞ on the sphere SN−1 such that

RN+|α|∂αK(Rσ − y) →
R→+∞

Kα
∞(σ),

which completes the proof of Theorem 5.

One application of Theorem 5 is given by the next corollary.

Corollary 3. Let 1 ≤ j, k ≤ N , α ∈ NN and σ ∈ SN−1. There exist bounded measurable
functions Kα

0,∞, Kα
j,∞ and Lα

j,k,∞ on the sphere SN−1 such that

∀y ∈ RN ,





RN+|α|∂αK0(Rσ − y) →
R→+∞

Kα
0,∞(σ),

RN+|α|∂αKj(Rσ − y) →
R→+∞

Kα
j,∞(σ),

RN+|α|∂αLj,k(Rσ − y) →
R→+∞

Lα
j,k,∞(σ).

Proof. We infer from formulae (22), (23) and (25) that K̂0, K̂j and L̂j,k are rational fractions
which are only singular at the origin and belong to K̂(RN ). Corollary 3 is then a consequence
of Theorem 5.

Remark 13. Formula (61) gives an expression of the limit K∞ in function of the kernel K. It
is quite involved to compute explicitly such an expression. However, we can conjecture the limit
of the non-isotropic kernels K0, Kj and Lj,k. Indeed, consider for instance the kernel K0. By
formula (22), its Fourier transform writes

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
.

Turning back to the proof of Theorem 5, we remark that the limit at infinity of K0 is formally
identical to the limit at infinity of the kernel R0 whose Fourier transform is

R̂0(ξ) =
|ξ|2

2|ξ|2 − c2ξ21
.

Indeed, the only terms which appear in the limit at infinity of the kernelK0 are the homogeneous
terms of lowest degree of the numerator and denominator of K̂0. Moreover, up to a change of
variables, the kernel R0 is related to the composed Riesz kernels. Indeed, it is equal to

R̂0(ξ) =
N∑

j=1

1
2(1− c2

2 )δj,1
R̂j,j

(√
1− c2

2
ξ1, . . . , ξN

)
.
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Since we know the limit at infinity of the composed Riesz kernels by formula (30), we deduce
that

K0,∞(σ) = R0,∞(σ) =
Γ(N

2 )(1− c2

2 )
N−3

2 c2

8π
N
2 (1− c2

2 + c2σ2
1

2 )
N
2

(
1− Nσ2

1

1− c2

2 + c2σ2
1

2

)
. (62)

Likewise, by formulae (23) and (25), we can compute formally the limit at infinity of the kernel
Kj

Kj,∞(σ) =
Γ(N

2 )(1− c2

2 )
N−1

2

4π
N
2 (1− c2

2 + c2σ2
1

2 )
N
2

(
δj,1(1− c2

2
)−

δj,1+1

2 − N(1− c2

2 )−δj,1σ1σj

1− c2

2 + c2σ2
1

2

)
, (63)

and of the kernel Lj,k

Lj,k,∞(σ) =
Γ(N

2 )

2c2π
N
2

(
(
1− c2

2
)N

2

(
δj,k(1− c2

2 )−
δj,1+δk,1+1

2

(1− c2

2 + c2σ2
1

2 )
N
2

− N(1− c2

2 )−δj,1−δk,1+ 1
2σjσk

(1− c2

2 + c2σ2
1

2 )
N+2

2

)

− δj,k +Nσjσk

)
.

(64)

Formulae (62), (63) and (64) lead to Conjecture 1 as we will see in Section 2.3.

2.2 Pointwise convergence of convolution integrals involving the Gross-Pi-
taevskii kernels

Now, we turn to the pointwise convergence of all the convolution integrals involving the Gross-
Pitaevskii kernels K0, Kj and Lj,k.

Proposition 9. Let σ ∈ SN−1, 1 ≤ j, k ≤ N and α ∈ NN such that |α| ≤ 2. Then, the following
assertion holds

RN+|α|∂α(K ∗ f)(Rσ) →
R→+∞

Kα
∞(σ)

∫

RN

f(x)dx,

for K, either equal to K0, Kj or Lj,k, and f either equal to F , Gj or Gk.

The proof of Proposition 9 is a straightforward consequence of Corollaries 2 and 3, and
Lemma 2, so we postpone its proof after the proof of Lemma 2.

Proof of Lemma 2. We divide the proof in three steps which correspond to each desired asser-
tion.

Step 1. The next assertion holds

RNg(Rσ) →
R→+∞

K∞(σ)
∫

RN

f(x)dx,

where K∞ denotes the bounded measurable function given by Theorem 5.

Indeed, consider R > 0 and write the expression of the function g

RNg(Rσ) =
∫

RN

RNK(Rσ − y)f(y)dy

=
∫

|Rσ−y|≤R
2

RNK(Rσ − y)f(y)dy +
∫

|Rσ−y|> R
2

RNK(Rσ − y)f(y)dy.
(65)
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On one hand, by assumption (i) and since K ∈ K(RN ),
∣∣∣∣∣
∫

|Rσ−y|≤R
2

RNK(Rσ − y)f(y)dy

∣∣∣∣∣ =

∣∣∣∣∣
∫

|σ−z|≤ 1
2

R2NK(R(σ − z))f(Rz)dz

∣∣∣∣∣

≤ A

∫

|σ−z|≤ 1
2

R2N

(1 +R2N |z|2N )(RN−1|σ − z|N−1)
dz

≤ A

RN−1

∫

|σ−z|≤ 1
2

dz

|z|2N |σ − z|N−1
→

R→+∞
0.

On the other hand, by Theorem 5,

RN1|Rσ−y|> R
2
K(Rσ − y)f(y) →

R→+∞
K∞(σ)f(y),

while by assumption (i) and since K ∈ K(RN ),

∀y ∈ B
(
Rσ,

R

2

)c

, |RNK(Rσ − y)f(y)| ≤ ARN

|Rσ − y|N (1 + |y|2N )
≤ A

1 + |y|2N
,

hence, by the dominated convergence theorem,
∫

|Rσ−y|> R
2

RNK(Rσ − y)f(y)dy →
R→+∞

K∞(σ)
∫

RN

f(x)dx,

which gives the desired result by equation (65).

Step 2. The following assertion is valid

RN+1∂jg(Rσ) →
R→+∞

Kj
∞(σ)

∫

RN

f(x)dx,

where Kj∞ denotes the bounded measurable function given by Theorem 5.

The proof is quite similar to the proof of Step 1. Indeed, consider R > 0 and state likewise

RN+1∂jg(Rσ) =
∫

|Rσ−y|≤R
2

RN+1∂jK(Rσ − y)f(y)dy +
∫

|Rσ−y|> R
2

RN+1∂jK(Rσ − y)

f(y)dy.
(66)

On one hand, by assumption (i) and since K ∈ K(RN ),
∣∣∣∣∣
∫

|Rσ−y|≤R
2

RN+1∂jK(Rσ − y)f(y)dy

∣∣∣∣∣ ≤ A

∫

|σ−z|≤ 1
2

R2N+1

(1 +R2N |z|2N )(RN− 1
2 |σ − z|N− 1

2 )
dz

≤ A

RN− 3
2

→
R→+∞

0.

On the other hand, by Theorem 5,

RN+11|Rσ−y|> R
2
∂jK(Rσ − y)f(y) →

R→+∞
Kj
∞(σ)f(y),

while by assumption (i) and since K ∈ K(RN ),

∀y ∈ B
(
Rσ,

R

2

)c

, |RN+1∂jK(Rσ − y)f(y)| ≤ ARN+1

|Rσ − y|N+1(1 + |y|2N )
≤ A

1 + |y|2N
,
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hence, by the dominated convergence theorem,
∫

|Rσ−y|> R
2

RN+1∂jK(Rσ − y)f(y)dy →
R→+∞

Kj
∞(σ)

∫

RN

f(x)dx,

which ends the proof of Step 2 by equation (66).

Step 3. The assertion

RN+2∂2
j,kg(Rσ) →

R→+∞
Kj,k
∞ (σ)

∫

RN

f(x)dx

holds if Kj,k∞ denotes the bounded measurable function defined in Theorem 5.

Indeed, Lemma 4 gives

∂2
j,kg(Rσ) =

∫

B(0,1)c

∂2
j,kK(y)f(Rσ − y)dy +

∫

B(0,1)
∂2

j,kK(y)(f(Rσ − y)− f(Rσ))dy

+
(∫

SN−1

∂jK(y)ykdy

)
f(Rσ),

which yields by an integration by parts and the change of variables z = Rσ − y,

RN+2∂2
j,kg(Rσ) =RN+2

∫

B(Rσ, R
2

)c

∂2
j,kK(Rσ − z)f(z)dz +RN+2

∫

B(Rσ, R
2

)
∂2

j,kK(Rσ − z)

(f(z)− f(Rσ))dz + 2RN+1

(∫

S(0, R
2

)
∂jK(y)ykdy

)
f(Rσ).

(67)

On one hand, we compute by assumption (i) and since K ∈ K(RN ),

RN+1

∣∣∣∣∣
∫

S(0, R
2

)
∂jK(y)ykdy

∣∣∣∣∣ |f(Rσ)| ≤ ARN+1

1 +R2N

∫

S(0, R
2

)

dy

|y|N ≤ A

RN
→

R→+∞
0.

On the other hand, by assumption (ii) and since K ∈ K(RN ), we find

RN+2

∣∣∣∣∣
∫

B(Rσ, R
2

)
∂2

j,kK(Rσ − z)(f(z)− f(Rσ))dz

∣∣∣∣∣

≤ARN+2

(∫

B(Rσ,1)

dz

|Rσ − z|N− 1
2

sup
y∈B(Rσ,1)

|∇f(y)|+
∫

1≤|Rσ−z|≤R
2

dz

|Rσ − z|N+1

sup
y∈B(Rσ, R

2
)

|∇f(y)|
)

≤ A

RN−1
→

R→+∞
0.

Finally, Theorem 5 gives

RN+21|Rσ−z|> R
2
∂2

j,kK(Rσ − z)f(z) →
R→+∞

Kj,k
∞ (σ)f(z),

while by assumption (i) and since K ∈ K(RN ),

∀z ∈ B
(
Rσ,

R

2

)c

, |RN+2∂2
j,kK(Rσ − z)f(z)| ≤ ARN+2

|Rσ − z|N+2(1 + |z|2N )
≤ A

1 + |z|2N
,
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hence, by the dominated convergence theorem,
∫

B(Rσ, R
2

)c

∂2
j,kK(Rσ − z)f(z)dz →

R→+∞
Kj,k
∞ (σ)

∫

RN

f(x)dx,

which ends the proofs of Step 3 and Lemma 2 by equation (67).

Before investigating the pointwise convergence of the convolution integrals involving the com-
posed Riesz kernels, we complete the proof of Proposition 9.

Proof of Proposition 9. By Corollary 2, the functions F and G satisfy the assumptions (i) and
(ii) of Lemma 2. Moreover, the functions K0, Kj and Lj,k belong to K(RN ) by Proposition
3 and their Fourier transforms are rational fractions in K̂(RN ), only singular at the origin by
formulae (22), (23) and (25). Thus, Proposition 9 follows from Lemma 2 applied to the kernels
K0, Kj and Lj,k, and to the functions F and G.

2.3 Pointwise convergence of convolution integrals involving the composed
Riesz kernels

We now establish Proposition 4 by studying the pointwise convergence of the convolution inte-
grals involving the composed Riesz kernels Rj,k.

Proposition 10. Let 1 ≤ j, k, l ≤ N and σ ∈ SN−1. Then, we have




RNRj,k ∗Gk(Rσ) →
R→+∞

Γ(N
2

)

2π
N
2

(δj,k −Nσjσk)
∫
RN Gk(x)dx,

RN+1∂lRj,k ∗Gk(Rσ) →
R→+∞

NΓ(N
2

)

2π
N
2

((N + 2)σjσkσl − δj,kσl − δj,lσk − δk,lσj)
∫
RN Gk.

Proof. By Corollary 2, the functions Gk verify the assumptions (i), (ii) and (iii) of Lemma 3.
Thus, Proposition 10 follows from Lemma 3 and it only remains to prove this lemma.

Proof of Lemma 3. We split the proof in two steps which correspond to each desired assertion.

Step 1. We have

RNg(Rσ) →
R→+∞

Γ(N
2 )

2π
N
2

(δj,k −Nσjσk)
∫

RN

f(x)dx.

Indeed, equation (30) yields for every R > 0,

RNg(Rσ) =
Γ(N

2 )RN

2π
N
2

(∫

|y|> R
2

δj,k|y|2 −Nyjyk

|y|N+2
f(Rσ − y)dy +

∫

|y|≤R
2

δj,k|y|2 −Nyjyk

|y|N+2

(f(Rσ − y)− f(Rσ))dy

)
,

so, by the change of variable z = Rσ − y,

RNg(Rσ) =
Γ(N

2 )RN

2π
N
2

(∫

|Rσ−z|> R
2

δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)
|Rσ − z|N+2

f(z)dz

+
∫

|Rσ−z|≤R
2

δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)
|Rσ − z|N+2

(f(z)− f(Rσ))dz

)
.

(68)
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However, on one hand, we compute

RN

∣∣∣∣∣
∫

|Rσ−z|≤R
2

δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)
|Rσ − z|N+2

(f(z)− f(Rσ))dz

∣∣∣∣∣

≤ARN

∫

|Rσ−z|≤R
2

dz

|Rσ − z|N−1
sup

x∈B(Rσ, R
2

)

|∇f(x)|

≤ ARN+1

1 +R2N+1
→

R→+∞
0.

On the other hand, we find

RN1|Rσ−z|> R
2

δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)
|Rσ − z|N+2

f(z) →
R→+∞

(δj,k −Nσjσk)f(z).

Moreover, assumption (i) yields

∀z ∈ B
(
Rσ,

R

2

)c

, RN

∣∣∣∣
δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)

|Rσ − z|N+2
f(z)

∣∣∣∣ ≤
A

1 + |z|2N
,

so, by the dominated convergence theorem,

RN

∫

|Rσ−z|> R
2

δj,k|Rσ − z|2 −N(Rσj − zj)(Rσk − zk)
|Rσ − z|N+2

f(z)dz →
R→+∞

(δj,k −Nσjσk)
∫

RN

f,

which leads to the desired result by equation (68).

Now, we show the second assertion, which relies on equation (32).

Step 2. We have

RN+1∂lg(Rσ) →
R→+∞

NΓ(N
2 )

2π
N
2

(−(δj,kσl + δj,lσk + δk,lσj) + (N + 2)σjσkσl)
∫

RN

f(x)dx.

The proof is rather similar to the previous one. Indeed, consider R > 0 and integrate equation
(32) by parts:

∂lg(Rσ) =
∫

B(0, R
2

)c

∂lRj,k(y)f(Rσ − y)dy +
∫

B(0, R
2

)
∂lRj,k(y)(f(Rσ − y)− f(Rσ)

+ y.∇f(Rσ))dy +
2
R

∫

S(0, R
2

)
Rj,k(y)yl(f(Rσ)− y.∇f(Rσ))dy.

By the change of variable z = Rσ − y, it becomes

RN+1∂lg(Rσ) =RN+1

∫

B(Rσ, R
2

)c

∂lRj,k(Rσ − z)f(z)dz +RN+1

∫

B(Rσ, R
2

)
∂lRj,k(Rσ − z)

(f(z)− f(Rσ) + (Rσ − z).∇f(Rσ))dz + 2RN

∫

S(0, R
2

)
Rj,k(y)yl(f(Rσ)

− y.∇f(Rσ))dy.

(69)

Now, by assumptions (i) and (ii),

RN

∣∣∣∣∣
∫

S(0, R
2

)
Rj,k(y)yl(f(Rσ) + y.∇f(Rσ))dy

∣∣∣∣∣ ≤ ARN

(
1

1 +R2N
+

R

1 +R2N+1

)
→

R→+∞
0,
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while by assumptions (iii),

RN+1

∣∣∣∣∣
∫

B(Rσ, R
2

)
∂lRj,k(Rσ − z)(f(z)− f(Rσ) + (Rσ − z).∇f(Rσ))dz

∣∣∣∣∣

≤ARN+1

∫

B(Rσ, R
2

)

dz

|Rσ − z|N−1
sup

x∈B(Rσ, R
2

)

|d2f(x)|

≤A RN+2

1 +R2N+2
→

R→+∞
0.

However, we compute

RN+21|Rσ−z|> R
2
∂lRj,k(Rσ − z)f(z) →

R→+∞
((N + 2)σjσkσl − (δj,kσl + δj,lσk + δk,lσj))f(z),

and by assumption (i),

∀z ∈ B
(
Rσ,

R

2

)c

, RN+1 |∂lRj,k(Rσ − z)f(z)| ≤ A

1 + |z|2N
,

so, by the dominated convergence theorem,

RN+1

∫

|Rσ−z|> R
2

∂lRj,k(Rσ − z)f(z)dz

→
R→+∞

((N + 2)σjσkσl − (δj,kσl + δj,lσk + δk,lσj))
∫

RN

f(x)dx,

which completes the proofs of Step 2 and of Lemma 3 by equation (69).

We are now in position to show Proposition 4.

Proof of Proposition 4. It follows from equations (21) and (24), and from Propositions 9 and
10 that there exist bounded measurable functions η∞, ηj∞, θj∞, ηj,k∞ and θj,k∞ such that for every
σ ∈ SN−1, 




RNη(Rσ) →
R→+∞

η∞(σ),

RN+1∂jη(Rσ) →
R→+∞

ηj∞(σ),

RN∂jθ(Rσ) →
R→+∞

θj∞(σ),

RN+2∂2
j,kη(Rσ) →

R→+∞
ηj,k∞ (σ),

RN+1∂2
j,kθ(Rσ) →

R→+∞
θj,k∞ (σ).

In particular, we can compute for every σ ∈ SN−1,

η∞(σ) = K0,∞(σ)
∫

RN

F (x)dx+ 2c
N∑

j=1

Kj,∞(σ)
∫

RN

Gj(x)dx (70)

θj
∞(σ) =

c

2
Kj,∞(σ)

∫

RN

F (x)dx+
N∑

k=1

(c2Lj,k,∞(σ) +
Γ(N

2 )

2π
N
2

(δj,k −Nσjσk))
∫

RN

Gk(x)dx. (71)

Thus, it only remains to consider the existence of the function θ∞. It follows from the next
lemma.
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Lemma 10. Let f ∈ C1(RN ,C) and M > 1. Assume that for every j ∈ {1, . . . , N}, there is a
bounded function f j∞ defined on the sphere SN−1 such that

∀σ ∈ SN−1, RM∂jf(Rσ) →
R→+∞

f j
∞(σ),

and that
f(x) →

|x|→+∞
λ∞ ∈ C.

Then,

∀σ ∈ SN−1, RM−1(f(Rσ)− λ∞) →
R→+∞

f∞(σ) = − 1
M − 1

N∑

j=1

σjf
j
∞(σ).

Proof of Lemma 10. Indeed, f belongs to C1(RN ,C) and converges to λ∞ at infinity, so, since
M > 1, we can state

∀R > 1, f(Rσ)− λ∞ = −
∫ +∞

R

N∑

j=1

∂jf(rσ)σjdr.

Moreover, we have

N∑

j=1

∂jf(rσ)σj =
1
rM

N∑

j=1

f j
∞(σ)σj + o

r→+∞

(
1
rM

)
,

therefore,

∫ +∞

R

N∑

j=1

∂jf(rσ)σjdr =
1

(M − 1)RM−1

N∑

j=1

f j
∞(σ)σj + o

R→+∞

(
1

RM−1

)
,

which yields

RM−1(f(Rσ)− λ∞) →
R→+∞

− 1
M − 1

N∑

j=1

f j
∞(σ)σj = f∞(σ).

At this point, we notice that the function ψθ satisfies all the assumptions of Lemma 10 with
M = N and λ∞ = 0. Thus, there is a bounded measurable function θ∞ such that

RN−1θ(Rσ) →
R→+∞

θ∞(σ) = − 1
N − 1

N∑

j=1

σjθ
j
∞(σ).

Moreover, by equation (71), we compute the next more explicit form of θ∞

θ∞(σ) = − 1
N − 1

(
c

2

( N∑

j=1

σjKj,∞(σ)
)∫

RN

F (x)dx+
N∑

k=1

(
c2

N∑

j=1

σjLj,k,∞(σ)

− (N − 1)Γ(N
2 )

2π
N
2

σk

)∫

RN

Gk(x)dx.

) (72)
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Remark 14. Conjecture 1 follows from formulae (70) and (72). Indeed, in the first section of
the second part, we computed formally the values of K0,∞, Kj,∞ and Lj,k,∞ (see formulae (62),
(63) and (64)). By equations (70) and (72), it only remains to compute the values of

∫
RN F (x)dx

and
∫
RN Gk(x)dx to get explicit expressions of the limits η∞ and θ∞. In the third part, we will

compute such integrals and we will obtain that
∫

RN

F (x)dx = 2((4−N)E(v) + c(N − 3)p(v)),

and ∫

RN

Gk(x)dx = 2Pk(v).

Finally, by equations (62), (63), (64), (70) and (72), it yields the value of the functions η∞,

η∞(σ) =
cΓ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

((
4−N

2
cE(v) + (2 +

N − 3
2

c2)p(v)
)(

1

(1− c2

2 + c2σ2
1

2 )
N
2

− Nσ2
1

(1− c2

2 + c2σ2
1

2 )
N+2

2

)
− 2

(
1− c2

2

) N∑

j=2

Pj(v)
Nσ1σj

(1− c2

2 + c2σ2
1

2 )
N+2

2


 ,

and θ∞

θ∞(σ) =
Γ(N

2 )

2π
N
2

(
1− c2

2

)N−3
2

((
4−N

2
cE(v) + (2 +

N − 3
2

c2)p(v)
)

σ1

(1− c2

2 + c2σ2
1

2 )
N
2

+2
(

1− c2

2

) N∑

j=2

Pj(v)
σj

(1− c2

2 + c2σ2
1

2 )
N
2


 .

Since v∞ is equal to θ∞, it leads formally to Conjecture 1.

2.4 Uniformity of the convergence

Now, we show the uniformity of the previous pointwise convergence. Actually, Proposition 5
even yields a little more. Indeed, the functions σ 7→ RNη(Rσ) and σ 7→ RN−1θ(Rσ) converge to
η∞, respectively θ∞, in C1(SN−1), respectively C2(SN−1), when R tends to +∞. As claimed in
the introduction, it follows from the decay estimates of Theorem 6 and Ascoli-Arzela’s theorem.

Proof of Proposition 5. Consider the functions (ηR)R>0 and (θR)R>0 defined by

∀σ ∈ SN−1,





ηR(σ) = RNη(Rσ)
θR(σ) = RN−1(ψθ)(Rσ)
vR(σ) = RN−1(v(Rσ)− 1).

Step 1. Computation of some derivatives of the functions ηR and θR and of their limits at
infinity.

We first compute some explicit expressions of some derivatives of ηR and θR and of their
limits when R → +∞. It will be fruitful to prove the uniformity of the convergence and to
deduce Proposition 6. By Proposition 4, we first get for every σ ∈ SN−1,





ηR(σ) →
R→+∞

η∞(σ)

θR(σ) →
R→+∞

θ∞(σ).
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Then, by definition, we have for every j ∈ {1, . . . , N} and for every function f ∈ C1(SN−1),

∂S
N−1

j f(σ) = lim
t→0

f( σ+tej

|σ+tej |)− f(σ)

t
.

Therefore, considering a function f ∈ C1(RN ) and denoting for every R > 0 and σ ∈ SN−1,

fR(σ) = f(Rσ),

we compute

∂S
N−1

j fR(σ) = R(∂jf(Rσ)− σj

N∑

i=1

σi∂if(Rσ)). (73)

Likewise, we find for every k ∈ {1, . . . , N} and σ ∈ SN−1,

∂S
N−1

j σk = δj,k − σjσk. (74)

Thus, it follows from formula (73) that




∂S
N−1

j ηR(σ) = RN+1(∂jη(Rσ)− σj

N∑
k=1

σk∂kη(Rσ)),

∂S
N−1

j θR(σ) = RN (∂j(ψθ)(Rσ)− σj

N∑
k=1

σk∂k(ψθ)(Rσ)).
(75)

By Proposition 4, it gives




∂S
N−1

j ηR(σ) →
R→+∞

ηj∞(σ)− σj

N∑
k=1

σkη
k∞(σ),

∂S
N−1

j θR(σ) →
R→+∞

θj∞(σ)− σj

N∑
k=1

σkθ
k∞(σ).

Moreover, the functions η and ψθ satisfy all the assumptions of Lemma 10 with M = N + 1,
respectively M = N , and λ∞ = 0. Therefore, Lemma 10 leads to





N∑
k=1

σkη
k∞(σ) = −Nη∞(σ),

N∑
k=1

σkθ
k∞(σ) = −(N − 1)θ∞(σ),

(76)

and finally, 



∂S
N−1

j ηR(σ) →
R→+∞

ηj∞(σ) +Nσjη∞(σ),

∂S
N−1

j θR(σ) →
R→+∞

θj∞(σ) + (N − 1)σjθ∞(σ).
(77)

Likewise, formulae (73) and (74) yield for every (j, k) ∈ {1, . . . , N}2,

∂S
N−1

k (∂S
N−1

j θR)(σ) =RN+1

(
∂2

j,kθ(Rσ)−
N∑

l=1

σl

(
σk∂

2
j,lθ(Rσ) + σj∂

2
k,lθ(Rσ)− σkσj

N∑

m=1

σm∂
2
l,mθ(Rσ)

))
−RN

N∑

l=1

(
(δj,k − σjσk)σl + (δk,l − σkσl)σj

)

∂lθ(Rσ),

(78)
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so, by Proposition 4,

∂S
N−1

k (∂S
N−1

j θR)(σ) →
R→+∞

θj,k
∞ (σ)−

N∑

l=1

σl

(
σkθ

j,l
∞(σ) + σjθ

k,l
∞ (σ)− σkσj

N∑

m=1

σm

θl,m
∞ (σ)

)
−

N∑

l=1

(
(δj,k − σjσk)σl + (δk,l − σkσl)σj

)
θl
∞(σ).

However, the function ∂jθ also satisfies the assumptions of Lemma 10 with M = N + 1 and
λ∞ = 0. Thus, we obtain likewise

N∑

l=1

σlθ
j,l
∞(σ) = −Nθj

∞(σ), (79)

and

∂S
N−1

k (∂S
N−1

j θR)(σ) →
R→+∞

θj,k
∞ (σ) +Nσkθ

j
∞(σ) + (N − 1)σjθ

k
∞(σ) + (N − 1)(δj,k

+ (N − 2)σjσk)θ∞(σ).
(80)

Step 2. Uniformity of the convergence.

Now, assume by contradiction that (ηR)R>0 does not converge to η∞ in C1(SN−1). Then,
there is some real number ε > 0, and a sequence of positive real number (Rn)n∈N tending to
+∞, such that

∀n ∈ N, ‖ηRn − η∞‖L∞(SN−1) + ‖∇SN−1
ηRn −∇S

N−1
η∞‖L∞(SN−1) > ε.

However, on one hand, by Proposition 2 and equation (75), there is some real number A such
that

∀n ∈ N,
{
‖ηRn‖L∞(SN−1) ≤ A

‖∇SN−1
ηRn‖L∞(SN−1) ≤ ARN+1

n ‖∇η(Rn.)‖L∞(SN−1) ≤ A.

On the other hand, formulae (73), (74) and (75), Proposition 2 and Theorem 6 yield that

‖d2,SN−1
ηRn‖L∞(SN−1) ≤ A(RN+1

n ‖∇η(Rn.)‖L∞(SN−1) +RN+2
n ‖d2η(Rn.)‖L∞(SN−1)) ≤ A.

Therefore, by Ascoli-Arzela’s theorem, up to a subsequence, (ηRn)n∈N converges in the space
C1(SN−1). By Proposition 4, its limit is necessarily equal to η∞, which yields a contradiction.
Thus, (ηR)R>0 converges to η∞ in C1(SN−1). In particular, η∞ is of class C1 on SN−1 and
satisfies by equations (77) for every j ∈ {1, . . . , N},

∂S
N−1

j η∞(σ) = ηj
∞(σ) +Nσjη∞(σ). (81)

Likewise, by Proposition 2, Theorem 6 and equations (75) and (78), there is some real number
A such that





‖θR‖L∞(SN−1) ≤ A,

‖∇SN−1
θR‖L∞(SN−1) ≤ ARN‖∇(ψθ)(R.)‖L∞(SN−1) ≤ A,

‖d2,SN−1
θR‖L∞(SN−1) ≤ ARN (‖∇(ψθ)(R.)‖L∞(SN−1) +R‖d2(ψθ)(R.)‖L∞(SN−1)) ≤ A.

Formulae (73), (74) and (78) then give

‖d3,SN−1
θR‖L∞(SN−1) ≤ A(RN‖∇(ψθ)(R.)‖L∞(SN−1) +RN+1‖d2(ψθ)(R.)‖L∞(SN−1)

+RN+2‖d3(ψθ)(R.)‖L∞(SN−1)),
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so, by Proposition 2 and Theorem 6,

‖d3,SN−1
θR‖L∞(SN−1) ≤ A.

Thus, up to the argument by contradiction above, the functions (θR)R>0 converge to θ∞ in
C2(SN−1). In particular, θ∞ is in C2(SN−1) and satisfies by equations (77) and (80) for every
(j, k) ∈ {1, . . . , N}2,

∂S
N−1

j θ∞(σ) = θj
∞(σ) + (N − 1)σjθ∞(σ), (82)

and

∂S
N−1

k (∂S
N−1

j θ∞)(σ) = θj,k
∞ (σ) +Nσkθ

j
∞(σ) + (N − 1)σjθ

k
∞(σ)) + (N − 1)(δj,k

+ (N − 2)σkσj)θ∞(σ).
(83)

Finally, we consider the uniform convergence of the function vR. By definition, we have for every
σ ∈ SN−1 and R > 3R0,

vR(σ) = RN−1(
√

1− η(Rσ)eiθ(Rσ) − 1),

so, by Proposition 2 and the proof of the uniform convergences of ηR and θR just above,

‖vR − iθ∞‖L∞(SN−1)

≤RN−1‖
√

1− η(R.)− 1‖L∞(SN−1) + ‖RN−1(eiθ(R.) − 1)− iθ∞‖L∞(SN−1)

≤A
(

1
R
‖ηR‖L∞(SN−1) +

1
RN−1

‖θ2
R‖L∞(SN−1) + ‖θR − θ∞‖L∞(SN−1)

)

→
R→+∞

0.

Likewise, we compute for every j ∈ {1, . . . , N} by equation (73),

∂S
N−1

j vR(σ) = RN

(
i
√

1− η(Rσ)∂jθ(Rσ)− ∂jη(Rσ)
2
√

1− η(Rσ)
− σj

N∑

k=1

σk

(
− ∂kη(Rσ)

2
√

1− η(Rσ)

+ i
√

1− η(Rσ)∂kθ(Rσ)
))

eiθ(Rσ)

=

(
i
√

1− η(Rσ)∂S
N−1

j θR(σ)− ∂S
N−1

j ηR(σ)

2R
√

1− η(Rσ)

)
eiθ(Rσ).

Therefore, by Proposition 2 and the proof of the convergences in C1(SN−1) of ηR and θR just
above,

‖∂SN−1

j vR − i∂S
N−1

j θ∞‖L∞(SN−1) ≤A
(
‖∂SN−1

j θR − i∂S
N−1

j θ∞‖L∞(SN−1) + ‖(
√

1− η(R.)

eiθ(R.) − 1)∂S
N−1

j θ∞‖L∞(SN−1) +
1
R
‖∂SN−1

j ηR‖L∞(SN−1)

)

≤A
(
‖∂SN−1

j θR − i∂S
N−1

j θ∞‖L∞(SN−1) +
1
RN

‖ηR‖L∞(SN−1)

+
1

RN−1
‖θR‖L∞(SN−1) +

1
R
‖∂SN−1

j ηR‖L∞(SN−1)

)

→
R→+∞

0.

Thus, denoting v∞ = θ∞, v∞ is a smooth function on SN−1, which satisfies

‖vR − v∞‖C1(SN−1) →
R→+∞

0.

This concludes the proof of Proposition 5.
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2.5 Partial differential equations satisfied by η∞, θ∞ and v∞

Finally, we deduce from the proof of Proposition 5 just above the partial differential equations
satisfied by η∞ and θ∞.

Proof of Proposition 6. Let σ ∈ SN−1. On one hand, we compute from equation (2) on a
neighbourhood of infinity

∆η + 2|∇v|2 + 2c∂1θ − 2η − 2cη∂1θ + 2η2 = 0,

so, for every R > 0,

RN (∆η(Rσ) + 2|∇v(Rσ)|2 − 2c∂1θ(Rσ)− 2η(Rσ) + 2cη(Rσ)∂1θ(Rσ) + 2η(Rσ)2) = 0.

Taking the limit R→ +∞, it gives by Propositions 2 and 4, and Theorem 6,

η∞(σ) = cθ1
∞(σ),

which reduces to equation (34) by equation (82).

On the other hand, equation (18) yields on a neighbourhood of infinity

RN+1(∆θ(Rσ)− c

2
∂1η(Rσ)−∇η(Rσ).∇θ(Rσ)− η∆θ(Rσ)) = 0.

Therefore, Propositions 2 and 4, and Theorem 6 yield once again at the limit R→ +∞
N∑

j=1

θj,j
∞ (σ) =

c

2
η1
∞(σ),

which gives by equation (81),

N∑

j=1

θj,j
∞ (σ) =

c

2
(∂S

N−1

1 η∞(σ)−Nσ1η∞(σ)).

However, by equations (82) and (83),

N∑

j=1

θj,j
∞ (σ) =

N∑

j=1

∂S
N−1

j (∂S
N−1

j θ∞)(σ)− (2N − 1)
N∑

j=1

σjθ
j
∞(σ)

− (N − 1)
N∑

j=1

(1 + (N − 2)σ2
j )θ∞(σ)

= ∆S
N−1

θ∞(σ)− (2N − 1)
N∑

j=1

σjθ
j
∞(σ)− (N − 1)(2N − 2)θ∞(σ).

Then, equation (76) states
N∑

j=1

σjθ
j
∞(σ) = −(N − 1)θ∞(σ),

so,
N∑

j=1

θj,j
∞ (σ) = ∆S

N−1
θ∞(σ) + (N − 1)θ∞(σ).
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Thus, we finally find equation (35)

∆S
N−1

θ∞(σ) + (N − 1)θ∞(σ) =
c

2
(∂S

N−1

1 η∞(σ)−Nσ1η∞(σ)).

Now, it only remains to prove that the functions θ∞ and η∞ are smooth on SN−1. Indeed,
equations (34) and (35) give

∆S
N−1

θ∞−c
2

2
∂S

N−1

1 (∂S
N−1

1 θ∞)+c2(N−1)σ1∂
SN−1

1 θ∞+(N−1)(1+
c2

2
−(N+1)

c2

2
σ2

1)θ∞ = 0. (84)

Thus, θ∞ is solution on SN−1 of an elliptic partial differential system with smooth coefficients.
By standard elliptic theory, it is of class C∞ on SN−1. By equation (34), η∞ is also smooth on
SN−1.

We conclude the second part by the proof of Theorem 1, which follows from Proposition 5
and equation (84).

Proof of Theorem 1. By Proposition 5, there exists a smooth function v∞ = θ∞ on SN−1 such
that

|x|N−1(v(x)− 1)− iv∞

(
x

|x|
)

→
|x|→+∞

0 uniformly.

Moreover, by equation (84), v∞ satisfies the linear partial differential equation (10).

3 Asymptotics in dimension two and in the axisymmetric case

In the last part, we focus on the axisymmetric case and on the case of dimension two. In
both cases, the system of equations (34) and (35) reduces to an entirely integrable system of
linear ordinary differential equations of second order. In Proposition 7, we compute explicitly
its solutions up to undetermined constants α and β. Lemma 6 in connection with the Pohozaev
identities of Lemma 7 links the value of α and β with the energy E(v) and the momentum ~P (v),
which completes the proof of Theorems 2 and 3. Finally, we deduce Corollary 1 from Lemma 7.

3.1 Explicit expression for the first order term

This section is devoted to the integration of the system of equations (34) and (35) in dimension
two and in the axisymmetric case. It relies on the use of spherical coordinates. That is the
reason why we first recall some of their properties.

Indeed, let ΦN : Ω = R+ × [0, π]N−2 × [0, 2π] 7→ RN , the function defined by

ΦN (r, β1, . . . , βN−1) = (r cos(β1), r sin(β1) cos(β2), . . . , r
N−1
Π

i=1
sin(βi)).

The function ΦN is smooth on Ω and its Jacobian matrix is

J(ΦN )(r, β1, . . . , βN−1) = (Ji,j)1≤i,j≤N ,

where 



J1,j =
j−1

Π
k=1

sin(βk) cos(βj),

Ji,j = 0, if i ≥ 2 and j ≤ i− 2,

Ji,i−1 = −r
i−1
Π

k=1
sin(βk),

Ji,j = r
j−1

Π
k=1

sin(βk) cos(βj) cos(βi−1), otherwise.
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Thus, J(ΦN ) is invertible if and only if r 6= 0 and βj 6= 0 modulo π for every j ∈ {1, . . . , N − 2}.
Moreover, its inverse is

J(ΦN )−1(r, β1, . . . , βN−1) = (J−1
i,j )1≤i,j≤N ,

where 



J−1
i,1 =

i−1
Π

k=1
sin(βk) cos(βi),

J−1
i,j = 0, if j ≥ 2 and i ≤ j − 2,
J−1

j−1,j = − sin(βj−1)

r
j−2

Π
k=1

sin(βk)

,

J−1
i,j =

i−1
Π

k=j
sin(βk)

r
j−2

Π
k=1

sin(βk)

cos(βj−1) cos(βi), otherwise.

Therefore, if we consider a smooth function f ∈ C∞(RN ) and denote

g = f ◦ ΦN ,

the chain rule theorem yields

∀y ∈ Ω, J(ΦN )(y)



∂1f(ΦN (y))

...
∂Nf(ΦN (y))


 =




∂rg(y)
...

∂βN−1
g(y)


 .

Moreover, assuming f is axisymmetric around axis x1 or the dimension N is two, the function
g is independent on the variables β2, . . . and βN , which yields for every j ∈ {2, . . . , N},

∂1f(ΦN (y)) = cos(β1)∂rg(y)− sin(β1)
r

∂β1g(y),

∂jf(ΦN (y)) =
j−1

Π
k=1

sin(βk) cos(βj)∂rg(y) +
cos(β1) cos(βj)

r

j−1

Π
k=2

sin(βk)∂β1g(y),

∂2
1,1f(ΦN (y)) = cos2(β1)∂2

r,rg(y) +
2 sin(β1) cos(β1)

r2
∂β1g(y)−

2 sin(β1) cos(β1)
r

∂2
r,β1

g(y)

+
sin2(β1)

r
∂rg(y) +

sin2(β1)
r2

∂2
β1,β1

g(y),

∂2
j,jf(ΦN (y)) =

j−1

Π
k=2

sin(βk)2 cos2(βj)
(

sin2(β1)∂2
r,rg(y) +

2 sin(β1) cos(β1)
r

∂2
r,β1

g(y)

− 2 sin(β1) cos(β1)
r2

∂β1g(y) +
cos2(β1)

r
∂rg(y) +

cos2(β1)
r2

∂2
β1,β1

g(y)

− 1
r
∂rg(y)− cos(β1)

r2 sin(β1)
∂β1g(y)

)
+

1
r
∂rg(y) +

cos(β1)
r2 sin(β1)

∂β1g(y),

∆f(ΦN (y)) = ∂2
r,rg(y) +

N − 1
r

∂rg(y) +
1
r2

(∂2
β1,β1

g(y) + (N − 2)cotan(β1)∂β1g(y)),

provided that r 6= 0 and sin(β1) 6= 0. Finally, consider now a smooth function f ∈ C∞(SN−1)
and denote

g(β1, . . . , βN−1) = f(ΦN (1, β1, . . . , βN−1)).

Assuming f is axisymmetric around axis x1 or the dimension N is two, we deduce that for every
y = (1, β1, . . . , βN−1) such that sin(β1) 6= 0,

∂S
N−1

1 f(ΦN (y)) = − sin(β1)∂β1g(y)

∂2,SN−1

1,1 f(ΦN (y)) = sin2(β1)∂2
β1,β1

g(y) + 2 sin(β1) cos(β1)∂β1g(y)

∆SN−1f(ΦN (y)) = ∂2
β1,β1

g(y) + (N − 2)cotan(β1)∂β1g(y).

(85)
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Proposition 7 is then a consequence of formulae (85), and equations (34) and (35).

Proof of Proposition 7. In this proof, the dimension N is assumed to be two, or the travelling
wave v is supposed to be axisymmetric around axis x1. Thus, the functions η∞ and θ∞ only
depend on the variable β1 in spherical coordinates. Up to a misuse of notations, we will consider
them as functions of β1.

However, by Proposition 6, θ∞ is smooth on SN−1 and satisfies equation (84). Therefore, in
the new variables, it is smooth on [0, π] in dimensionN ≥ 3, respectively [0, 2π] in dimension two.
Moreover, by equation (84) and formulae (85), it verifies the second order ordinary differential
equation

(1− c2

2
sin2(β1))θ′′∞(β1) + ((N − 2)cotan(β1)−Nc2 cos(β1) sin(β1))θ′∞(β1) + (N − 1)

(1 +
c2

2
− (N + 1)

c2

2
cos2(β1))θ∞(β1) = 0.

(86)

The articles of C.A. Jones, S.J. Putterman and P.H. Roberts [13, 12] yield one particular solution
of equation (86) in dimensions two and three. Generalising its form to every dimension, we find
a first solution equal to

Sol1(β1) =
cos(β1)

(1− c2

2 sin2(β1))
N
2

.

However, the set of solutions on ]0, π[ in dimension N ≥ 3, respectively ]0, π[ and ]π, 2π[ in
dimension two, is a vectorial space of dimension two. In order to find another independent
solution, we let

u(β1) =
θ∞(β1)
Sol1(β1)

,

for every β1 ∈]0, π[\{π
2 } in dimension N ≥ 3, respectively β1 ∈]0, π[\{π

2 }∪]π, 2π[\{3π
2 } in di-

mension two. Then, we compute the next ordinary differential equation for the function u:

sin(β1) cos(β1)(1− c2

2
sin2(β1))u′′(β1) + (N − 2−N sin2(β1) + c2 sin4(β1))u′(β1) = 0.

After a first integration, we deduce that there is some real constant A such that

u′(β1) = A
(1− c2

2 sin2(β1))
N−2

2

cos2(β1) sinN−2(β1)
,

and, after another integration, we infer that there is another real constant B such that

u(β1) = B +A

p−1∑

k=0

1
2(k − p) + 3

Ck
p−1

(
1− c2

2

)k+p− 3
2

tan2(k−p)+3(β1)

if N = 2p, and if N = 2p+ 1,

u(β1) =B +A

(
1− c2

2

)p−1
(√

1 +
(

1− c2

2

)
tan2(β1) +

p∑

k=1

Ck
p

ak

(
ln

( √
1− c2

2 tan(β1)

1 +
√

1 + (1− c2

2 ) tan2(β1)

)
−

k−1∑

q=1

aq+1

2q

√
1 + (1− c2

2 ) tan2(β1)

(1− c2

2 )q tan2q(β1)

))
,
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where

∀k ∈ N∗, ak =
(−4)k−1((k − 1)!)2

(2(k − 1))!
.

Thus, we find another particular solution equal to

Sol2(β1) =
sin(β1)

1− c2

2 sin2(β1)

if N = 2,

Sol2(β1) =
cos(β1)

(1− c2

2 sin2(β1))p

p−1∑

k=0

1
2(k − p) + 3

Ck
p−1

(
1− c2

2

)k+p− 3
2

tan2(k−p)+3(β1)

if N = 2p and p > 1, and if N = 2p+ 1,

Sol2(β1) =
cos(β1)

(1− c2

2 sin2(β1))
2p+1

2

(
1− c2

2

)p−1
(√

1 +
(

1− c2

2

)
tan2(β1) +

p∑

k=1

Ck
p

ak

(
ln

( √
1− c2

2 tan(β1)

1 +
√

1 + (1− c2

2 ) tan2(β1)

)
−

k−1∑

q=1

aq+1

2q

√
1 + (1− c2

2 ) tan2(β1)

(1− c2

2 )q tan2q(β1)

))
.

In particular, we remark that

Sol2(β1) ∼
β1→0

(1− c2

2 )p− 3
2

(3− 2p)β2p−3
1

, (87)

if N = 2p and p > 1,
Sol2(β1) ∼

β1→0
ln(β1) (88)

if N = 3, and if N = 2p+ 1 with p > 1,

Sol2(β1) ∼
β1→0

1
(2− 2p)β2p−2

1

. (89)

Thus, every solution v of equation (86) writes as

v(β1) = ASol1(β1) +BSol2(β1)

on ]0, π[\{π
2 } in dimension N ≥ 3, respectively ]0, π[\{π

2 } and ]π, 2π[\{3π
2 } in dimension two.

Actually, θ∞ is a smooth, bounded solution of equation (86). By assertions (87), (88) and
(89), the functions Sol2 are not bounded at the point β1 = 0 in dimension N ≥ 3, so, there is
some real constant α such that

θ∞(β1) = αSol1(β1) =
α cos(β1)

(1− c2

2 sin2(β1))
N
2

,

which yields formula (37) in the axisymmetric case. On the other hand, in dimension two, both
solutions Sol1 and Sol2 are smooth and bounded on S1. Therefore, there are some real constants
α and β such that

θ∞(σ) = α
cos(β1)

1− c2

2 + c2 cos(β1)2

2

+ β
sin(β1)

1− c2

2 + c2 cos(β1)2

2

,
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which is formula (39). Moreover, in dimension two, the axisymmetric travelling waves are even
functions of β1. Thus, if the travelling wave v is axisymmetric, the function θ∞ is an even
function of β1, which means that the constant β vanishes and which leads to equation (37) in
dimension two.

Now, equation (34) yields in spherical coordinates, up to a new misuse of notations,

η∞(β1) = −c(sin(β1)θ′∞(β1) + (N − 1) cos(β1)θ∞(β1)).

In dimension two, it gives equation (38)

η∞(β1) = αc

(
1

1− c2

2 sin2(β1)
− 2 cos2(β1)

(1− c2

2 sin2(β1))2

)
− 2βc

sin(β1) cos(β1)
(1− c2

2 sin2(β1))2
,

while in the axisymmetric case, it gives formula (36)

η∞(β1) = αc

(
1

(1− c2

2 sin2(β1))
N
2

− N cos2(β1)

(1− c2

2 sin2(β1))
N
2

+1

)
.

This ends the proof of Proposition 7.

3.2 Value of the stretched dipole coefficient

Finally, we link the values of the coefficients α and β to the energy E(v) and the momentum ~P (v).
The proof essentially relies on integral equations which are summed up by Lemmas 6 and 7. In
Lemma 7, we state Pohozaev’s identities for equation (2). They follow from the multiplication
of equation (2) by the standard Pohozaev multipliers xj∂jv(x) and several integrations by parts.
They were already derived in [8], so, we omit their proof here. On the other hand, Lemma 6
provides integral equations (40) and (41). In particular, equation (40) is very similar to the new
integral relation of [8]. The main difference is that the speed c is now supposed to be subsonic,
whereas it was supersonic in [8].

Proof of Lemma 6.

Step 1. Proof of equation (40).

The proof relies on the multiplication of equation (2) by the standard multipliers v and iv.
Indeed, consider the function defined by

∀R > 0,Φ(R) =
∫

B(0,R)
η(x)dx.

the multiplication of equation (2) by the function v gives after some integrations by parts
∫

B(0,R)
(|∇v|2 + η2) = c

∫

B(0,R)
i∂1v.v + Φ(R) +

∫

S(0,R)
∂νv.v,

which also writes for R sufficiently large
∫

B(0,R)
(|∇v|2 + η2) = c

∫

B(0,R)
(i∂1v.v + ∂1(ψθ)) + Φ(R)− 1

2

∫

S(0,R)
∂νη − c

∫

S(0,R)
ν1θ. (90)

By Proposition 1, we infer
∫

B(0,R)
(|∇v|2 + η2) →

R→+∞

∫

RN

(|∇v|2 + η2),
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while by definition, ∫

B(0,R)
(i∂1v.v + ∂1(ψθ)) →

R→+∞
2p(v). (91)

However, Proposition 2 yields
∣∣∣∣∣
∫

S(0,R)
∂νη

∣∣∣∣∣ ≤
ARN−1

RN+1
→

R→+∞
0,

while Proposition 5 gives
∫

S(0,R)
ν1θ = RN−1

∫

SN−1

σ1θ(Rσ)dσ →
R→+∞

∫

SN−1

σ1θ∞(σ)dσ. (92)

Thus, equation (90) leads to

Φ(R) →
R→+∞

∫

RN

(|∇v|2 + η2)− 2cp(v) + c

∫

SN−1

σ1θ∞(σ)dσ. (93)

On the other hand, we can also multiply equation (2) by the function iv to find

c

2
∂1η + div(i∇v.v) = 0. (94)

Now, we multiply this equation by the function x1 and integrate by parts to obtain

c

2
Φ(R) +

∫

B(0,R)
i∂1v.v =

∫

S(0,R)

(
c

2
Rν2

1η +Rν1i∂νv.v

)
,

which also writes for R sufficiently large

c

2
Φ(R) = −

∫

B(0,R)
(∂1(ψθ) + i∂1v.v) +

∫

S(0,R)

(
c

2
Rν2

1η +Rν1i∂νv.v + ν1θ

)
. (95)

By Proposition 5, we get
∫

S(0,R)
Rν2

1η = RN

∫

SN−1

σ2
1η(Rσ)dσ →

R→+∞

∫

SN−1

σ2
1η∞(σ)dσ.

We then compute

∫

S(0,R)
Rν1i∂νv.v = −

∫

S(0,R)
Rν1ρ

2∂νθ =
∫

S(0,R)
Rν1η∂νθ −

∫

S(0,R)
Rν1

N∑

k=1

νk∂kθ.

However, on one hand, Proposition 2 gives
∣∣∣∣∣
∫

S(0,R)
Rν1η∂νθ

∣∣∣∣∣ ≤
ARN

R2N
→

R→+∞
0.

On the other hand, by Propositions 2 and 4, equation (76) and the dominated convergence
theorem, we compute

∫

S(0,R)
Rν1

N∑

k=1

νk∂kθ =
∫

SN−1

RNσ1

N∑

k=1

σk∂kθ(Rσ)dσ →
R→+∞

∫

SN−1

σ1

N∑

k=1

σkθ
k
∞(σ)dσ

= −(N − 1)
∫

SN−1

σ1θ∞(σ)dσ.
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Thus, it follows from equations (91), (92) and (95) that

Φ(R) →
R→+∞

−4
c
p(v) +

∫

SN−1

σ2
1η∞(σ)dσ +

2N
c

∫

SN−1

σ1θ∞(σ)dσ.

By equation (93) and by uniqueness of the limit of the function Φ in +∞, we finally find
∫

RN

(|∇v|2 + η2)− 2cp(v) + c

∫

SN−1

σ1θ∞(σ)dσ = −4
c
p(v) +

∫

SN−1

(σ2
1η∞(σ) +

2N
c
σ1θ∞(σ))dσ,

which yields immediately equation (40).

Step 2. Proof of equation (41)

The proof relies once more on equation (94) just above. Here, we multiply it by the function
xj for any j ∈ {2, . . . , N} and integrate by parts on the ball B(0, R) to obtain

∫

B(0,R)
i∂jv.v =

∫

S(0,R)

(
c

2
Rν1νjη +Rνji∂νv.v

)
,

which also writes for R sufficiently large
∫

B(0,R)
(∂j(ψθ) + i∂jv.v) =

∫

S(0,R)

(
c

2
Rνjν1η +Rνji∂νv.v + νjθ

)
. (96)

By Proposition 5,
∫

S(0,R)
Rν1νjη = RN

∫

SN−1

σ1σjη(Rσ)dσ →
R→+∞

∫

SN−1

σ1σjη∞(σ)dσ,

and, ∫

S(0,R)
νjθ = RN−1

∫

SN−1

σjθ(Rσ)dσ →
R→+∞

∫

SN−1

σjθ∞(σ)dσ.

Likewise, we compute

∫

S(0,R)
Rνji∂νv.v = −

∫

S(0,R)
Rνjρ

2∂νθ =
∫

S(0,R)
Rνjη∂νθ −

∫

S(0,R)
Rνj

N∑

k=1

νk∂kθ.

However, on one hand, Proposition 2 gives
∣∣∣∣∣
∫

S(0,R)
Rνjη∂νθ

∣∣∣∣∣ ≤
ARN

R2N
→

R→+∞
0.

On the other hand, by Propositions 2 and 4, equation (76) and the dominated convergence
theorem, we get

∫

S(0,R)
Rνj

N∑

k=1

νk∂kθ =
∫

SN−1

RNσj

N∑

k=1

σk∂kθ(Rσ)dσ →
R→+∞

∫

SN−1

σj

N∑

k=1

σkθ
k
∞(σ)dσ

= −(N − 1)
∫

SN−1

σjθ∞(σ)dσ.

Thus, it follows from the definition of the momentum and from equation (96) that

2 ~Pj(v) =
c

2

∫

SN−1

σ1σjη∞(σ)dσ +N

∫

SN−1

σjθ∞(σ)dσ,

which is equation (41).
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Now, we state the proof of Theorem 2.

Proof of Theorem 2. By Proposition 7, we already know

∀σ ∈ SN−1, v∞(σ) = θ∞(σ) =
ασ1

(1− c2

2 + c2σ2
1

2 )
N
2

.

Thus, it only remains to deduce the value of the stretched dipole coefficient α from formula (40).
Indeed, by Proposition 7, formula (40) writes

∫

RN

(|∇v|2 + η2)− 2c
(

1− 2
c2

)
p(v) =αc

( (
2N
c2

− 1
) ∫

SN−1

σ2
1

(1− c2

2 + c2σ2
1

2 )
N
2

dσ +
∫

SN−1

(
σ2

1

(1− c2

2 + c2σ2
1

2 )
N
2

− Nσ4
1

(1− c2

2 + c2σ2
1

2 )
N
2

+1

)
dσ

)
.

Denoting

J1 =
∫

RN

(|∇v|2 + η2)− 2c(1− 2
c2

)p(v),

and

J2 =
2N
c

∫

SN−1

σ2
1

(1− c2

2 + c2σ2
1

2 )
N
2

dσ −Nc

∫

SN−1

σ4
1

(1− c2

2 + c2σ2
1

2 )
N
2

+1
dσ,

it also writes
J1 = αJ2. (97)

Now, we express J1 in function of the energy E(v) and the momentum p(v). Indeed, Lemma 7
yields ∫

RN

|∂1v|2 = E(v),

and ∫

RN

|∇⊥v|2 = (N − 1)(E(v)− cp(v)),

where ∇⊥v is defined by
∇⊥v = (∂2v, . . . , ∂Nv).

However, by definition,

E(v) =
1
2

∫

RN

|∂1v|2 +
1
2

∫

RN

|∇⊥v|2 +
1
4

∫

RN

η2,

so, ∫

RN

η2 = 2(N − 1)cp(v)− 2(N − 2)E(v).

Thus, we conclude that

J1 = (4−N)E(v) + ((N − 3)c+
4
c
)p(v). (98)

On the other hand, we can explicitly compute the value of J2 in function of c and N . Indeed,
we have

J2 =
2N
c

(
1− c2

2

)∫

SN−1

σ2
1

(1− c2

2 + c2σ2
1

2 )
N
2

+1
dσ. (99)
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Therefore, we are reduced to estimate the integral defined by

I(N, c) =
∫

SN−1

σ2
1

(1− c2

2 + c2σ2
1

2 )
N
2

+1
dσ. (100)

In dimension two, we use the polar coordinates to compute such an integral:

I(N, c) =
∫ 2π

0

cos2(β)
(1− c2

2 sin2(β))2
dβ = 4

∫ +∞

0

dt

(1 + (1− c2

2 )t2)2

=
4√

1− c2

2

∫ +∞

0

du

(1 + u2)2

=
π√

1− c2

2

,

where we made the successive changes of variables t = tan(β) and u =
√

1− c2

2 t.

In dimension N ≥ 3, we use the spherical coordinates:

I(N, c) = |SN−2|
∫ π

0

cos2(β) sinN−2(β)

(1− c2

2 sin2(β))
N
2

+1
dβ. (101)

At this stage, the computations are different according to the parity of the dimension N . As-
suming first that N = 2p+ 2 is even, we find

|S2p| = 22p+1πpp!
(2p)!

,

and
∫ π

0

cos2(β) sinN−2(β)

(1− c2

2 sin2(β))
N
2

+1
dβ = 2

∫ +∞

0

t2p

(1 + (1− c2

2 )t2)2+p
dt

=
2

(1− c2

2 )p+ 1
2

∫ +∞

0

u2p

(1 + u2)2+p
du

=
2

(1− c2

2 )p+ 1
2

∫ +∞

0

th(s)2p

ch(s)3
ds,

where we made the changes of variables t = tan(β), u =
√

1− c2

2 t and u = sh(s). Then, consider

∀p ∈ N, Ip =
∫ +∞

0

th(s)2p

ch(s)
ds.

An integration by parts gives

Ip − Ip+1 =
∫ +∞

0

th(s)2p

ch(s)3
ds =

Ip+1

2p+ 1
.

Since I0 = π
2 , the value of Ip is

Ip =
(2p)!π

22p+1(p!)2
,
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and finally, ∫ +∞

0

th(s)2p

ch(s)3
ds =

(2(p+ 1))!π
22p+3((p+ 1)!)2(2p+ 1)

.

Thus, equation (101) writes

I(2p+ 2, c) =
πp+1

(1− c2

2 )p+ 1
2 (p+ 1)!

. (102)

In particular, formula (102) remains valid when p = 0.

On the other hand, assuming that N = 2p+ 3 is odd, we compute

|S2p+1| = 2πp+1

p!
,

and
∫ π

0

cos2(β) sinN−2(β)

(1− c2

2 sin2(β))
N
2

+1
dβ = 2

∫ 1

0

u2(1− u2)p

(1 + c2

2 (u2 − 1))p+ 5
2

du

=
4
√

2
c2p+3(1− c2

2 )p+1

∫ c√
2−c2

0

v2(c2(1 + v2)− 2v2)p

(1 + v2)p+ 5
2

dv

=
4
√

2
c2p+3(1− c2

2 )p+1

∫ c√
2

0
(c2 − 2w2)pw2dw

=
2

(1− c2

2 )p+1

∫ π
2

0
(sin2p+1(θ)− sin2p+3(θ))dθ,

where we successively made the changes of variables u = cos(β), v = cu√
2−c2

, w = v√
1+v2

and
w = c√

2
cos(θ). Now, Wallis’ formulae yield

∫ π
2

0
(sin2p+1(θ)− sin2p+3(θ))dθ =

4p(p!)2

(2p+ 1)!(2p+ 3)
,

which gives ∫ π

0

cos2(β) sinN−2(β)

(1− c2

2 sin2(β))
N
2

+1
dβ =

22p+1(p!)2

(1− c2

2 )p+1(2p+ 1)!(2p+ 3)
,

and finally, by equation (101),

I(2p+ 3, c) =
(4π)p+1p!

(1− c2

2 )p+1(2p+ 1)!(2p+ 3)
. (103)

In conclusion, if N = 2p+ 2, we have by equations (97), (98), (99), (100) and (102),

α =
(1− c2

2 )p− 1
2 p!

2πp+1

(
(1− p)cE(v) + (2 +

2p− 1
2

c2)p(v)
)
,

and if N = 2p+ 3, by equations (97), (98), (99), (100) and (103),

α =
(1− c2

2 )p(2p+ 1)!
(4π)p+1p!

(
1− 2p

2
cE(v) + (2 + pc2)p(v)

)
.

It yields immediately equation (12) by using the definition of the function Γ, and completes the
proof of Theorem 2.
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By the same arguments as in the proof of Theorem 2, we complete the proof of Theorem 3.

Proof of Theorem 3. By Proposition 7, we already know that

∀σ ∈ S1, v∞(σ) = θ∞(σ) = α
σ1

1− c2

2 + c2σ2
1

2

+ β
σ2

1− c2

2 + c2σ2
1

2

.

Thus, it only remains to deduce the values of the coefficients α and β from equations (40) and
(41). Indeed, by Proposition 7, formula (40) writes in dimension two

∫

R2

(|∇v|2 + η2)− 2c
(

1− 2
c2

)
p(v) =α

(
4
c

∫

S1
σ2

1

1− c2

2 + c2σ2
1

2

dσ − 2c
∫

S1
σ4

1

1− c2

2 + c2σ2
1

2

dσ

)
.

Actually, we remark that we recover formula (97) in dimension two. Therefore, the value of α
is exactly the same as in the proof of Theorem 2, i.e.

α =
1

2π
√

1− c2

2

(
cE(v) +

(
2− c2

2
)
p(v)

)
.

Likewise, by Proposition 7, formula (41) writes in dimension two

P2(v) =
β

2

(
2

∫

S1
σ2

2

1− c2σ2
2

2

dσ − c2
∫

S1
σ2

1σ
2
2

(1− c2σ2
2

2 )2
dσ

)
. (104)

Denoting

J3 := 2
∫

S1
σ2

2

1− c2σ2
2

2

dσ − c2
∫

S1
σ2

1σ
2
2

(1− c2σ2
2

2 )2
dσ,

we compute

J3 = (2− c2)
∫

S1
σ2

2

(1− c2σ2
2

2 )2
dσ = 4(2− c2)

∫ π
2

0

sin2(t)

(1− c2 sin2(t)
2 )2

dt

=
8√

1− c2

2

∫ +∞

0

u2

(1 + u2)2
du

=
8√

1− c2

2

∫ +∞

0

sh2(v)
ch3(v)

dv

=
2π√
1− c2

2

,

where we successively made the changes of variables u =
√

1− c2

2 tan(t) and u = sh(v). Then,
the computation of J3 yields by equation (104)

β =

√
1− c2

2

π
P2(v),

which concludes the proof of Theorem 3.

Finally, we conclude the paper by the proof of Corollary 1, which is an immediate consequence
of Theorem 2 and Lemma 7.
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Proof of Corollary 1. By equations (97), (99), (100), (102) and (103), there is some real number
Ac,N > 0 such that

α = Ac,N

(∫

RN

(|∇v|2 + η2)− 2cp(v) +
4
c2
p(v)

)
= Ac,NJ1. (105)

However, Lemma 7 gives on one hand

E(v) =
∫

RN

|∂1v|2.

On the other hand, by definition,

E(v) =
1
2

∫

RN

|∂1v|2 +
1
2

∫

RN

|∇⊥v|2 +
1
4

∫

RN

η2,

so,

E(v) =
∫

RN

|∇⊥v|2 +
1
2

∫

RN

η2.

Thus, we compute

J1 = 2(E(v)− cp(v)) +
4
c2
p(v) +

1
2

∫

RN

η2. (106)

Moreover, Lemma 7 once more yields

E(v)− cp(v) =
1

N − 1

∫

RN

|∇⊥v|2 ≥ 0,

and likewise,

cp(v) = E(v)− 1
N − 1

∫

RN

|∇⊥v|2 =
N − 2
N − 1

∫

RN

|∇⊥v|2 +
1
2

∫

RN

η2 ≥ 0.

Therefore, J1 is the sum of three non negative terms.

Now assume that α is equal to 0. Ac,N being strictly positive, J1 is equal to 0. By formula
(106), it follows that

E(v)− cp(v) = p(v) =
∫

RN

η2 = 0,

so the energy E(v) vanishes, and the travelling wave v is a complex constant of modulus one.

Reciprocally, if v is constant, the energy E(v) and the momentum p(v) vanish and α is equal
to 0 by equation (105), which ends the proof of Corollary 1.

Remark 15. By the proof of Corollary 1, the stretched dipole coefficient α is always non
negative.
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