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Abstract

We investigate the asymptotic behaviour of the subsonic travelling waves of finite energy
in the Gross-Pitaevskii equation in dimension larger than two. In particular, we give their
first order development at infinity in the case they are axisymmetric, and link it to their
energy and momentum.

Introduction

1 DMotivations

In this article, we focus on the travelling waves in the Gross-Pitaevskii equation
10 = Au + u(l — |ul?) (1)

of the form u(t,z) = v(z; — ct,...,zn). The parameter ¢ > 0 represents the speed of the
travelling wave, which moves in direction z1. The equation for v, which we will consider now,
writes

icopw + Av +v(1 — [v]?) = 0. (2)

The Gross-Pitaevskii equation is a physical model for the Bose-Einstein condensation, which is
associated at least formally to the so-called Ginzburg-Landau energy

Py =5 [ VP [ P Q

and to the momentum

Equation (1) presents an hydrodynamic form

Oep + div(pv) =0,
p(Ov 4+ v.Vv) + Vp? = pV (% - @) ) ©)

obtained by using the Madelung transform [14]

u= \//»)ew’
and denoting
v =2V86.
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Equations (5) are similar to Euler equations for an irrotational ideal fluid with pressure p(p) = p.

In particular, the speed of the sound waves near the constant solution u =1 is
Cs = V2.

The travelling waves of finite energy play an important role in the long time dynamics of
general solutions and were thoroughly studied by C.A. Jones, S.J. Putterman and P.H. Roberts
[13, 12]. They conjectured that there exist non-constant travelling waves of finite energy only
in the subsonic case

0<c<V2

F. Béthuel and J.C. Saut [3, 2| first investigated mathematically this conjecture. In dimension
two, they showed the existence of non-constant travelling waves of finite energy for small values
of ¢, and for a sequence of values of ¢ < v/2 tending to v/2. They also proved their non-existence
for ¢ = 0 in every dimension. Their work was complemented in dimension larger than three by
F. Béthuel, G. Orlandi and D. Smets [1], who also showed their existence when ¢ is small. On
the other hand, we proved their non-existence for every ¢ > /2 [8]. Thus, the problem of their
non-existence only remains open in the sonic case ¢ = v/2 (see [10] however for more details).
We will deliberately omit this case and only consider from now on the subsonic travelling waves,
i.e. we will assume

0<c< V2

Under this assumption and the additional hypothesis the travelling waves are axisymmetric
around axis x1, C.A. Jones, S.J. Putterman and P.H. Roberts [13, 12] characterised their be-
haviour at infinity by giving their first order development up to a multiplicative constant of
modulus one. In dimension two, they derived a formal asymptotic expansion

1]

(6)

v(r)—1 ~
D e A (1 - D
and in dimension three,
1T
o) -1 o~ O (7)
lel=too (27 + (1= 5)(23 + 23))>

Here, the constant « is the stretched dipole coefficient linked to the energy F(v) and to the
scalar momentum in direction x1, p(v) = P;(v), by the formulae

QMM = cE(v) + 2 (1 - f) p(v) (8)

dra = gE(v) +2p(v) 9)

in dimension two, and

in dimension three.

The goal of this paper is to provide a rigorous derivation of the asymptotic behaviour de-
scribed in (6), (7), (8) and (9), and a generalisation to every dimension N > 2.

2 Main results

Our main results are summed up in the next three theorems. The first one is the most general.
We consider any subsonic travelling waves of finite energy in any dimension N > 2, and prove
the existence of their first order development at infinity (which is consistent with conjectures
(6)) and (7) in dimensions two and three). Moreover, we compute a linear partial differential
equation satisfied by the first order term of their asymptotic expansion.



Theorem 1. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N > 2
of finite energy and speed 0 < ¢ < /2. There exist a complex number \s of modulus one and a
smooth function ve defined from the sphere SN=1 to R such that

|x’N—1(U($) — Aoo) — i AaoVso <\xxl> — 0 uniformly.

|z|—+o00
Moreover, the function ves satisfies the following linear partial differential equation on SN 1
2 2
Asn-1Vo0 — %a?N‘l (05" vse) + AN = 1)0185" s + (N = 1)(1 + %(1 — (N +1)02))vs0 = 0.

(10)
Remarks 1. 1. Subsequently, we will always assume that

Ao = 1.
Indeed, if this is not the case, we can study the function A !v instead of v: it is also a travelling

wave of finite energy and of speed ¢ which satisfies equation (2).

2. Equation (10) is defined on the sphere S¥~! immersed in the space RY. In order to
clarify its sense, we need to explicit some notations for derivations on SV¥~1. Thus, consider
some function f € C>®(S¥~1 C): the notation QSNA is defined by

- Fiey) — f@
Vie{l,...,N}, vz e N1 55" lf(:c):%in(l) [+t ZIZ )

)

where (e1, ..., ey) is the canonical basis of RV, The operator Agy—1 is the usual Laplace-Beltrami
operator on the sphere SV~1, given by

N
Vo e SV Agvr fa) = S8 T (05T ().

i=1

Our next theorems specify the form of the limit function v, in two cases: for the axisymmetric
travelling waves, which only depend on the variables x1 and

in every dimension N > 2, and for every travelling wave in dimension N = 2. In both cases,
equation (10) reduces to an ordinary differential equation of second order, which is entirely
integrable. In particular, it yields a proof of conjectures (6), (7), (8) and (9) in the axisymmetric
case.

Theorem 2. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N > 2
of finite energy and speed 0 < ¢ < /2, axisymmetric around azis 1. Then, there exists some
constant a such that the function ve is given by

Vo = (01,...,0n8) €SV v (0) = 7 S (11)
(1-9+50)7
2 2
Moreover, the constant « is equal to
N-3

N A\ ? [(4-N N -3

a= ( QN) <1 — > < cE(v) 4+ (2 + cz)p(v)> . (12)
2r2 2 2 2



Likewise, in dimension two, we can describe explicitly the asymptotic behaviour of every
travelling wave.

Theorem 3. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension two of
finite energy and speed 0 < ¢ < \/2. Then, there exist some constants o and 3 such that the
function v is given by

_ 01 02
Vo € SN ugo(o) = a = 2 +p FRNETE (13)
-5+ -5+
Moreover, the constants o and (3 are equal to
1 c?
0= ————(eB() + (2~ Sp(v)),
27 - <
\V 2
(14)
2
5=V T

Remarks 2. 1. There is a difficulty in the definition of P (v). Indeed, the integral which appears
in definition (4) is not always convergent for a travelling wave of finite energy. In order to state
formulae (12) and (14) rigorously, we define the momentum P(v) as

Blv) = ;/RN iVo.(v—1), (15)

and the scalar momentum in direction z1 by

p(v) = ;/RN iy (v —1). (16)

By [9], those integrals are well-defined in the case of travelling waves of finite energy. However,
we will give another equivalent definition of the momentum which is more suitable in our context
(see Subsection 3.1 of the introduction).

2. Theorem 3 is consistent with the axisymmetric case: assuming § = 0, we recover the
axisymmetric solution of Theorem 2 with the same value of the stretched dipole coefficient c.

The integration of equation (10) seems rather involved in dimension N > 3: we are not able
to compute an explicit formula for the function v, from equation (10). However, we conjecture
its expression as follows.

Conjecture 1. Let v be a travelling wave for the Gross-Pitaevskii equation of finite energy and

speed 0 < ¢ < \/2. Then, there exist some constants o, fa, ..., By such that the function veo is
equal to
o al o
_ 1 j
Vo e SV 1:'000(0):04 22N+Zﬁj JQQN'
I-5+5H = 0-5+59)2
2 2 Jj=2 2 2

Moreover, the constants o and [3; are equal to

. F(%) (1 _ CQ>N23 <4_2NCE(’U) +2+ N2_362)p(v)> :




Remark 1. In the second part, we will motivate this conjecture. Notice that, in case Conjecture
1 holds, it yields every possible asymptotic behaviour of a travelling wave v of finite energy in the
Gross-Pitaevskii equation. In particular, the first order term v, of the asymptotic expansion
of v is completely determined by some integral quantities «, (s, ..., Bn, related to the energy
E(v) and the momentum P(v).

This raises an interesting question. Consider N real numbers aj, ..., ay: is it possible to
construct a travelling wave v such that the values of the integral quantities «, B9, ..., By are
exactly equal to a1, ..., ay 7 In other words, is it possible to construct travelling waves v whose
asymptotic behaviour correspond to any possible one given by Conjecture 1, or are there other
restrictions for the possible asymptotic behaviours ?

To our knowledge, those questions remain open problems. Indeed, the existence results of F.
Béthuel and J.C. Saut [3, 2] in dimension two and F. Béthuel, G. Orlandi and D. Smets [1] in
dimension N > 3 prove the existence of travelling waves which are assumed to be axisymmetric.

However, in this case, we can show that the constants [, ..., Oy are all equal to 0 (which is
consistent with Theorem 2). Therefore, we do not know any travelling wave for which the values
of By, ..., By are not 0. Thus, a first step to answer to our questions could be to prove the

existence of travelling waves which are not axisymmetric.

One of the main interests of Theorems 1, 2 and 3 is their sharpness. In order to clarify this
claim, we must recall some recent mathematical results. F. Béthuel and J.C. Saut [3, 2] first
investigated the asymptotic behaviour of subsonic travelling waves in dimension two. They gave
a mathematical evidence for their convergence towards a constant of modulus one at infinity.
We complemented their work in [7] by proving the same convergence in every dimension N > 3.
Finally, in [9], we gave a first estimate of their decay at infinity (which is moreover an important
starting point of the analysis in this paper).

Theorem 4 ([9]). In dimension N > 2, for every travelling wave v for the Gross-Pitaevskii
equation of finite energy and speed 0 < ¢ < \/2, the function

z = [af Y o(2) ~ 1)

is bounded on RV,

Theorems 1, 2, 3 and 4 are then sharp because the decay rate at infinity they give is optimal.
There exist some travelling waves v such that the function

@ v Jal(v(z) — 1)

is not bounded on RY for any 3 > N —1: the decay exponent N —1 is the best possible in general
(although some travelling waves, the constant ones for instance, can decay faster at infinity).
The proof of the existence of such travelling waves v follows from two arguments. The first one
is the proof of the existence of non-constant axisymmetric travelling waves by F. Béthuel and
J.C. Saut [3, 2] in dimension two, and F. Béthuel, G. Orlandi and D. Smets [1] in dimension
N > 3. The second one relies on the next corollary of Theorem 2.

Corollary 1. Let v be a travelling wave for the Gross-Pitaevskii equation in dimension N > 2
of finite energy and speed 0 < ¢ < /2, azisymmetric around axis x1. Then, the constant o is
equal to 0 if and only if v is a constant travelling wave.

Therefore, if we now consider a non-constant axisymmetric travelling wave v, by Theorem
2 and Corollary 1, the function vs is not identically equal to 0 on SV—1,
Theorem 1, it means that the function

In particular, by

2 |z’ (v(z) — 1)



is not bounded on RY for any 8 > N — 1, which shows the sharpness of Theorems 1, 2, 3 and 4.

Now, in the hope of clarifying the proof of Theorem 1 and in order to specify general argu-
ments which could prove fruitful for other equations, we are going to explain how to infer such
a theorem.

3 Sketch of the proof of Theorem 1

Theorem 1 deals with the asymptotic expansion of a travelling wave. We construct the limit at
infinity of some function, in our case the function

z = oM Hu(z) — 1),

prove that the convergence is uniform and then compute a partial differential equation satisfied
by the limit function.

3.1 A new formulation of equation (2)

In [9], we already investigated the asymptotic behaviour of the travelling waves v in the Gross-
Pitaevskii equation. In particular, we derived Theorem 4 just mentioned above. The proof of
this theorem relies on a new formulation of equation (2), also relevant here, which we are going
to recall concisely. The first argument is to state the local smoothness and the Sobolev regularity
of a subsonic travelling wave v (see also the articles of F. Béthuel and J.C. Saut in dimension
two [3, 2], and of A. Farina [6]).

L (RN, then, v is
C*>, bounded, and the functions n := 1 — |[v|?> and Vv belong to all the spaces W*P(RN) for
keNand1l < p < +o0.

Proposition 1 ([9]). If v is a solution of finite energy of equation (2) in L}

It follows that the modulus p of v converges to 1 at infinity. In particular, there is some real
number Ry such that

1
p> 5 on B(0, Ry)“.

Since the energy E(v) is finite, it follows (up to a standard degree argument in dimension two)
that we may construct a lifting 6 of v on B(0, Ry)¢, that is a function in C*°(B(0, Ry)¢, R) such
that

v = pe'.
We next compute new equations for the new functions n and V#: since 6 is not well-defined on
RY, we introduce a cut-off function 1 € C*°(R¥ [0, 1]) such that

1 =0 on B(0, 2Ry),
1 =1 on B(0,3R0)¢.

All the asymptotic estimates obtained in [7, 9] are independent of the choice of Ry and 1, and
it will also be the case here. We finally deduce

A% —2An + 628%7177 = —AF — 2¢01div(G) (17)
and c
A(Yh) = 56177 + div(G), (18)
where
F =2|Vo|? + 2n? — 2cidyv.v — 2¢0; (16) (19)



and
G =1iVu.v+ V(¥0). (20)

Remark 2. At this stage, we can state another definition of the momentum

P(v) = ;/RN(in.v + V(y8)),

and of the scalar momentum in direction x1

p(v) = % /R 000+ 01(00))

A straightforward computation shows that those new definitions are equivalent to the previous
ones given by formulae (15) and (16). In the following, we will always use them in preference to
formulae (15) and (16) since they seem more suitable in our context.

It follows from those new definitions and from formulae (19) and (20) that the functions
F and G are almost quadratic functions of n and Vu, related to the density of energy and of
momentum. This is an important aspect of equations (17) and (18): they link our new functions
1 and 0 to some superlinear quantities ' and G, which have a relevant interpretation in terms
of quantities conserved by the Gross-Pitaevskii equations. In particular, the superlinear nature
of the nonlinearities is a key ingredient to establish the asymptotic properties of the travelling
waves. It motivates the introduction of the new variables 1 and 6.

3.2 Convolution equations

It is well-known that the asymptotic properties of solutions to linear partial differential equations
are related to the behaviour at infinity of their kernels, and this, for a large deal, also remains
valid for many nonlinear problems. Our approach is reminiscent of the article of J.L.. Bona and
Yi A. Li [4], and also appeared in the articles of A. de Bouard and J.C Saut [5], and M. Maris
[15, 16]. Tt consists in transforming the partial differential equations satisfied by the travelling
wave (equation (2) in our context) in some convolution equations. In the case of the travelling
waves for the Gross-Pitaevskii equation, we already computed such convolution equations in
[7, 9]. They follow from equations (17) and (18) and write

N
77:K0*F+2CZKJ'*GJ' (21)
j=1

where Ky and K are the kernels of Fourier transform,

= €1

Fol&) = gy aep — g 22
respectively
R s %)
and for every j € {1,..., N},
N N
0;(¥0) = ng*F—i—cQZLM*Gk—i—ZRj,k*Gk (24)
k=1 k=1



where L and R;j are the kernels of Fourier transform,

T £1¢;k
Lirl) =t s 2lef — ey (25)
respectively
Rule) = 3. (26)

Equations (21) and (24) are convolution equations with terms of the form K * f. The functions
K are kernels with explicit Fourier transforms which are rational fractions. The functions f are
nonlinear functions of n, Vv and V(¢0).

Our purpose is now to compute the limit at infinity of various weighted functions, for instance
x> [a|V(x).
By the previous convolution equations, it reduces to get the limit at infinity of functions of the
type
o ol K s f@) = [ eV (@ = )5y (21)
where p is equal to N, K refers to one of the kernels Ko, K, L; or R;; and f to the functions F’
or G. We will handle this problem, which is of independent interest!, by invoking the dominated

convergence theorem. Here, a main part of the analysis is devoted to study the properties of
the kernel K, leaving the nonlinear nature of the function f aside for the moment.?

3.3 Main properties of the kernels and pointwise convergence at infinity

In this section, we derive a number of results for our model function (27), which enter directly
in the proof of Theorem 1 and which rely on the dominated convergence theorem as mentioned
above. More precisely, we wish to establish limits of functions of the form (27), as |z| — +o0,
depending on the value of p and the form of K and f.

Step 1. Pointwise convergence of the kernels.

The first step is to prove the pointwise convergence when |z| tends to +oo of the integrand,
i.e.
y— |zlPK(z —y),

where the function K is a kernel whose Fourier transform is known explicitly, actually in our
case a rational fraction (the second step being the domination of the integrand).

Remark 3. It can depend on the direction of the convergence o = ﬁ: denoting * = Ro where

R >0 and o € SV, we are reduced to study the pointwise convergence of the functions
y — RPK(Ro —y)

when R tends to 400 for every o € SV,

! A similar analysis will be carried out on the solitary waves for the Kadomtsev-Petviashvili equation (see [11]).

2If the function f had compact support, then the limit at infinity of K % f would be directly deduced from
the limit of K. In our subsequent analysis, we also have to take into account the decay of f using nonlinear
arguments.



Our argument relies on the properties of the Fourier transform of the kernel K. Indeed, we
introduce the space of functions

K®RY) = {u e C®([RY\ {0},C),Vi € N,d'u € MPRY) N MF(RY)},
where M2°(RY) is defined by
MERY) = {u:RY = C / ||ullpgomvy = sup{|e|*|u(z)|,z € RV} < +oo},
for every a > 0.

Remark 4. The choice of the spaces is suggested by the form of the Fourier transforms of the
kernels Ko, K; and Lj . They belong to K(R”Y) by formulae (22), (23) and (25). However, we
can introduce some variants for other equations.

Now, we can specify the pointwise convergence of some functions whose Fourier transforms
are in K(RY). Indeed, we claim

Theorem 5. Let o € NV and K € S'(RY,C). Assume its Fourier transform K is a rational
fraction

I/(\':

)

Ol

which belongs to K(RY) and such that

v € RV \ {0},Q(¢) # 0.

Then, there erists a measurable function K& € L>®(SVN~1 C) such that

V(o,y) € SN x RN, RNHgo K (Ro — ) Lo Koo, (28)
— 400
Remark 5. In particular, we prove the pointwise convergence of all the derivatives of the kernels
K which satisfy the assumptions of Theorem 5: it will be very useful in the following.

As previously mentioned, Theorem 5 relies on the Fourier transform of the kernels K through
the next lemma which already appeared in [9].

Lemma 1. Let (0,y,R) € SN7! x RN x R% and assume |y| < R and oj # 0 for some integer
1 <j < N. Consider a tempered distribution K € S'(RN,C) such that its Fourier transform is
in IK(RN). Then, we have

N gy N 72 () pié-(Ro—y) N7
RYK(Ro —y) = (o, TN (/3(071)0 9, K(§)e y df-l—/ 9, K(¢&)

E B(0,%)

(29)
(e o) —1)d¢ + R /S . l)aajv ‘1f?<5>ei“"’””y>d5> :
'R

The proof of Theorem 5 then follows from applying the dominated convergence theorem to
formula (29).

There are many other ways to study the convergences as in (28), but the use of the Fourier
transforms of the kernels seems well-adapted to the context of partial differential equations,
where we know them explicitly. However, in some cases, we know the explicit expression of the
kernel K. It allows to bypass Theorem 5 for the computation of the limit of (27) by direct



computations. This is the case for the so-called composed Riesz kernels ;. Indeed, if f is a
smooth function and if we denote g, = R; * f, we compute

INE Stz —ul2 — Nz — ) — (N
vz € RN, gjn(z) = 251'2];) /|x_y|>1 ikl — Yl |x_;\xN+2y)](x y)kf(y)der 2;2];) "
30
il — ul2 — Nz — ) (o —
Lo U ) — sy
z—y|<

Here, the difficulty to apply the dominated convergence theorem does not come from the limit
at infinity of the kernels, but instead, from the domination of this convergence.

Step 2. Domination of the convergence.

The second step is to dominate the integrand, given by

y = |zPK(x —y)f(y),

independently of 2 € RY. In order to do so, we assume for instance that f is a smooth function
on RN with some algebraic decay, i.e. f and some of its derivatives belong to some space
C>®(RN) N M (RY) for some real number o > 0.

Remark 6. The choice of such assumptions is suggested by the algebraic decay of the functions
F and G. Indeed, in [9], we computed the algebraic decay of the functions 7, V(¢6) and Vv by
an argument due to J.L. Bona and Yi A. Li [4], and A. de Bouard and J.C Saut [5] (see also the
articles of M. Maris [15, 16] for many more details).

Proposition 2 ([9]). Let a € NV. Then, the functions n, V(¥0) and Vv satisfy
o (1, 07V (16),0°V0) € M (RN
o 0°Vn e Mg, (RY).

By Propositions 1 and 2, and formulae (19) and (20), the functions F' and G are smooth on
RY and belong to M%(RN ), which explains the choice of the assumptions on f. However, it is
possible to introduce some variants for other equations.

Under such assumptions for the function f, it remains to dominate the kernel K. It may be
straightforward when we know its exact expression (for instance, in the case of the composed
Riesz kernels by formula (30)). However, a suitable approach seems once more to estimate the
algebraic decay of K. In many cases, we know the Fourier transform of K. Therefore, we can
invoke some formula like (29) to obtain their algebraic decay. In [9], we handled this difficulty
for the so-called Gross-Pitaevskii kernels Ky, K; and L;, and for their derivatives.

Proposition 3 ([9]). Let N—2 < a < N, n €N and (j,k) € {1,...,N}2. The functions d" Ky,
d"K; and d"L;y, belong to M5, (RY).

a+n

Proving such a proposition for the kernel K (with possible different rates of decay) and using
the assumptions on the function f with a suitable value of « enables to dominate the function

y = [zPK(x —y)f(y)

on RY. We can then apply the dominated convergence theorem to get the pointwise convergence
at infinity of (27), that is the existence of the limit of the function

R RPK  f(Ro)

10



when R tends to 400 for every o € SV,

We can illustrate this argument for the travelling waves for Gross-Pitaevskii equation, where
it can be applied to equations (21) and (24). In this case, the kernels Ko, K; and L;  satisfy
the assumptions of Theorem 5 by formulae (22), (23) and (25). Therefore, we can compute their
limit at infinity by Theorem 5. Moreover, they belong to the space of functions

KRYY = {u e C®RN\ {0},C),¥n € N,Va €]N — 2, N]|,d"u € M2, (RV)}

a+n

by Proposition 3. Therefore, by the argument of domination just above, all of those kernels
satisfy

Lemma 2. Let 1 < j,k < N and assume the function K : RN s C is in IC(RY) and its Fourier
transform is a rational fraction which is only singular at the origin and belongs to IK(RN). We
consider a function f € C®(RY) such that

(i) f e L®°RN) N MR (RY),
(ii) V€ L®°RNN 0 Mg (RN,

and we denote g = K = f. Then, we have for every o € SVN—1,

o RNg(Ro) — Kuo(0) [gn f(2)dz,

R—+o0c0

« RNM0i9(Ro) | — K& (0) fyn f(@)dr.

o RN*202, g(Ro) — KL(0) fon f(x)da.

R—+

Remarks 3. 1. We do not need to assume (i) to prove the assertions on the pointwise con-

vergence of the functions g and 0j¢: we just need to suppose (i7) in the case of the functions
92, 9.
Jk

2. The notations K, K, and Kgok denote the limits at infinity of the kernels K, 0;K and
8?’ K given by Theorem 5. In particular, we prove the pointwise convergence at infinity of some
derivatives of g towards those limits. It will be very useful to compute some partial differential
equations like equation (10). However, it introduces some technical difficulties on which we will
come back in Subsections 3.5 and 3.6.

3. For other equations, we can obtain the domination very differently. In particular, the
algebraic decay conditions appearing in (i) and (i) are suitable for our equations, but they can
be modified in another context. In the article of J.L. Bona and Yi A. Li [4], domination for a
different class of equations in dimension one is obtained using a different type of argument.

The following lemma yields another illustration of the above argument for the composed
Riesz kernels. It will also be useful to prove Theorem 1.

Lemma 3. Let 1 < j,k,1 < N and o € SN=1. We consider a function f € C°(RN) such that
(i) f € L=RY) N M55 (RY),
(it) Vf e L®RN) N Mg, (RY),

(iii) d*f € L=®(RN) N MR, (RY),

and we denote g = R; . * f. Then, we have

11



(—(6jk01 + 8510k + 0k,105) + (N + 2)oj0,07) fRN fx)de.

Remarks 4. 1. We do not need to assume (4i7) to show the existence of the pointwise limit of
the function g. Moreover, the algebraic decay conditions appearing in (i), (#¢) and (¢ii) should
be fixed appropriately for different equations.

2. In Lemma 3 like in Lemma 2, we also prove the pointwise convergence at infinity of
the gradient of g. It also introduces some technical difficulties on which we will come back in
Subsections 3.5 and 3.6.

Finally, by convolution equations (21) and (24), Lemmas 2 and 3 yield the pointwise conver-
gence at infinity of the functions n and 6.

Proposition 4. Let 0 € SV~ and o € NV such that |a| < 2. Then, there exist some bounded
measurable functions 1%, and 0% on SV~! such that

RNl (Re) | — 1% (0),
RN-1Halgag(Ro) — 6% (o).

R—+00
Remark 7. In particular, we prove the pointwise convergence at infinity of some derivatives
of n and 6. Though it introduces some technical difficulties on which we will come back in
Subsections 3.5 and 3.6, it is a decisive step to derive equation (10).

On the other hand, in Theorem 1, we would like rather more than the pointwise convergence
of the function
z = |V (o(x) = 1)

towards its limit v,. We would like to prove its uniform convergence, i.e. whether the function
o+ RN"Y(v(Ro) — 1)

converges to oo in L%°(S™V 1) when R tends to +o0o. Coming back to our model problem (27),
it means that we must prove whether the function

o~ RPK x f(Ro) = RP o K(Ro —y)f(y)dy

converges in L>(SV~1) when R tends to +oo.

3.4 Uniformity of the convergence

To solve this difficulty, our argument relies on Ascoli-Arzela’s theorem. Indeed, we already know
the existence of a pointwise limit at infinity, so, it will give the uniformity of the convergence.
However, Ascoli-Arzela’s theorem requires some compactness: we deduce it from the algebraic
decay of the gradient of the function K * f. For instance, the sequence of functions

SN71

o — RPV (K f)(Ro)

SN_l

is uniformly bounded on , which yields the desired compactness.

Thus, in the context of Gross-Pitaevskii equation, we convert the pointwise convergence of
Proposition 4 in a uniform one.
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Proposition 5. There exist some functions (1o, Vo) € CHSN™1)2 and 0, € C2(SN™1) such
that

° RNT](RO') R:roo Noo(0) in CI(SN_I),

e RN-19(Ro) et Ooo(0) in C2(SV7Y),

e RN"Y(v(Ro) —1) — we(o) in CLESNL).
R—+o00
Remark 8. Actually, we prove the convergence at infinity of 1, # and v in some spaces C*(SV 1)
or C2(SV—1), better than L>®(SN~1). It will be fruitful to derive equation (10).

The main difficulty here is to compute the gradient of the function K« f. Indeed, the gradient
of such a convolution is not always the convolution (VK) % f, in particular if the kernel K is
not sufficiently smooth. We will see how to overcome such a difficulty in the next subsection.

3.5 Derivation of equation (10)

In the previous subsections, we obtained a uniform limit at infinity, denoted Ly, : SV =1 — C,
for the function
x— |z|PK  f(x).

An ultimate goal for this equation and similar ones would be to obtain an explicit formula
for Lo,. However, this seems rather difficult, though presumably not completely out of reach
(see Conjecture 1 for the Gross-Pitaevskii equation). Instead, we compute an elliptic partial
differential equation satisfied by L, namely equation (10) in our context. In some cases, for
instance assuming Lo, is axisymmetric, this equation may lead to the explicit form of L, (see
Theorems 2 and 3).

In order to derive such an equation, we take the limit at infinity of the partial differential
equation satisfied by the function K * f on R™V (equation (2) in our case). The implementation of
this argument requires some precise knowledge of the convergence at infinity of some derivatives
of the convolution K * f to the corresponding derivatives of Lo,. In order to obtain it, we face
a new difficulty related to the singularity at the origin of the kernels. Indeed, many of the
derivatives of our kernels present a non-integrable singularity at the origin, and therefore, we
are not allowed to derivate the convolution equation without additional care. The method to
overcome this difficulty is reminiscent of some classical arguments in distribution theory, using
integral formulae. More precisely, consider a kernel K which belongs to C(RY). Its gradient K
is in L'(RY), which yields

V(K + f) = (VK) * f,

provided that f belongs for instance to some space LP (RN ). However, we cannot write
(K + f) = (*K) * f,

mainly since we do not know enough integrability for the second derivative of K. Yet, we can
find an explicit expression for the second derivative of K x f, provided that f is sufficiently
smooth.

Lemma 4. Let 1 < j k < N and K € K(RY). Consider a function f € C®°(RN) such that

(i) [ € LoRY) N MR (RY),

13



(ii) Vf e LRV,

and denote g = K x f. Then, the second order partial derivative 8?’kg of g is continuous on RV
and satisfies

Ve e RV, 8?-7kg(ac) = /
B(0,1)c

+( [, oxmdy) o)

Remarks 5. 1. Conditions (i) and (i7) are suitable in our context, since the functions F' and
G previously defined in equations (19) and (20) satisfy such conditions. However, they can be
chosen differently for other equations.

02, K (1) f(x — y)dy + / 02K (W) (fa —y) — f(2))dy
B(0,1) (31)

2. Formula (31) is quite similar to the expected expression (8]2 wK) * f, which cannot hold
since the function 8]2 /X presents a singularity at the origin. Indeed, the function K has a double
partial derivative DJZ»’ K in the sense of distributions, which is equal to

D3 K = 92, K1p1)e + PV (07, K1p01)) + < /S o ajK(y)ykdy> do,

where PV(@%,CK 1B(0,1)) is the principal value at the origin of the function aj%kK , given by
¥ € CEBO.1), < PV o) o >= [ 3K 60 - 90)
Then, the double partial derivative in the sense of distribution of K x f is equal to the distribution

Djz’kK « f, which yields formula (31).

Likewise, we can compute explicit formulae for the first and second order derivatives of the
composed Riesz kernels.

Lemma 5. Let 1 < j,k,I,m < N and denote

T(XYY) 6. o lyl2 — N,
vy € RN\ {0}, R;x(y) = 2( 2; j’k’y”yNH L
T2

We consider a function f € C°(RY) such that
(i) € L=(RY) N M55 (RY),
(i) Vf e L®RY) N MR (RY),
(iti) d*f € L®(RY),
and we set g = R * f. Then, g is C' on RN and satisfies for every x € RY,

dg(x) = / O R k(y)f(z —y)dy + / O R k(y)(f(z —y) = f(x) +y.V(z))dy
B(0,1)° B(0,1) (32)
[ Riauli@ - vV @)y

-1

Moreover, if f verifies

14



(i) d*f € L=(R"),
g is C% on RN and verifies for every z € RV,

O my(x) = /B o1 O Ry (y) f (x — y)dy + /B o O mBin(W)(f(x —y) — f(z) +y.Vf(z)

S EI@@+ [ Ron(Onf @)~y 0 f @)y + [ aRsaly) 3
SN-1 gN-1
(£(2) ~ -V 1)+ 3 ()3 )y

Remarks 6. 1. The algebraic decay conditions appearing in (i) and (i¢) should be adapted for
various other kernels.

2. The derivatives and double derivatives of the composed Riesz kernels present singularities
at the origin, which are finite parts of the functions 9;R;; and 8l2ij,k, and some derivatives of
the Dirac mass dg. They both appear in formulae (32) and (33) as they previously appeared in
formula (31).

Formulae (31), (32) and (33) suitably replace convolution equations to prove the convergence
at infinity of some derivatives of the convolution K % f. Indeed, instead of computing the
pointwise limit at infinity of (27), we now compute the limit at infinity of functions such as

% [2f? /B L K =0~ f)iy

However, the argument is the same as in Subsection 3.3. We first use Theorem 5 to prove the
convergence at infinity of the derivatives of the kernel K, and then, Propositions 2 and 3 to
dominate the convergence and get its uniformity. It yields the convergence at infinity of some
derivatives of the convolution K * f, which was yet mentioned in Lemmas 2 and 3. Finally, by
the above argument, we obtain some partial differential equation for the function L, which
completes the study of the asymptotics at infinity of a function given by a convolution equation.
In particular, in our context, by equations (21) and (24), it yields a system of linear partial
differential equations on the sphere SV¥~! for the functions 7, and 6., from which we can
deduce equation (10).

Proposition 6. The functions 1 and 0 are in C°(SN™1) and satisfy for every o € SN—1

SN71

Noo(0) = (85" 0o () — (N = 1)01600(0)), (34)
AT o0 (0) + (N = Dbn(0) = S0 moe(0) = Nowirao o). (35)

3.6 Completing the proof of Theorem 1

Theorem 1 is a consequence of Proposition 5, which yields the uniform convergence of the
function

= [z (o(@) = 1)
towards v, and of Proposition 6, which specifies the partial differential equation (10) satisfied
by Vo

However, in order to complete its proof, we must mention some technical difficulties. In the
case of the travelling waves for the Gross-Pitaevskii equation, the decay estimates obtained in
Proposition 2 for the functions 7, 98 and v are not sufficient to dominate the convergence at
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infinity of the functions d?n, V(1) and d?(¢#) and to prove the uniformity of the convergences
of Vn, V(18) and d?(1)#). They are neither sufficient to apply Lemmas 2 and 3, nor to prove
Proposition 5.

Thus, we improve Proposition 2 for the functions d?n, d?(10), d*v and d*(¢) in the following
theorem.

Theorem 6. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension N > 2 of
finite energy and speed 0 < ¢ < /2. Then, we have

o (d*(0),d*v) € Mge,  (RN)?,
o (d%n,d3(ph)) € MR, ,(RN)2.

This improvement relies on the method introduced by J.L. Bona and Yi A. Li [4], A. de
Bouard and J.C Saut [5] and M. Maris [15, 16]. To get a feeling for the idea of this method,
let us compute for instance the algebraic decay of the function d?n. By equation (21), we must
estimate the algebraic decay of the function d?(Kg* F), which reduces by equation (31) to prove
in particular that the function

z - / 03, Ko(y) F(x — y)dy
B(0,1)¢

belongs to MJC\’,OH(RN ). The method just mentioned above now consists in writing for every

zr e RN,
<A /
B(0,1

|$|N+2

/B(O N 07 . Ko(y) F(z — y)dy ) 102 Ko ()| [y 2P (x — 1) |dy

)

+/ IaikKo(y)lléﬂ—yIN“IF(ﬂ:—y)Idy)
B(O,l)C

<A(|0F Bl g

N+2

@& ] L1y
N2

N2
+ ||8]2‘,kK0||L1(B(0,1)C)||FH]\3[%0+2(RN)”FHLOIZ(RN))’

and verifying that those norms are finite. Thus, this method connects the algebraic decay of
the function d?n for instance, to the decay of the kernels d2Kj or d>K j. The main point is that
in the case of superlinear nonlinearities (such as the almost quadratic nonlinearities F' and G),
the decay of the function is equal to the decay of the kernels. Applying this argument to each
integral appearing in equations (21) and (31), we can obtain the optimal algebraic decay of the
function d?n, which is equal to the decay of the kernels d?K and d>K j. This yields Theorem
6 3, from which we deduce the useful following corollary concerning the nonlinear functions F'
and G.

Corollary 2. The functions F and G belong to M55, (RY), their gradients, to Ms5 ., (RY), and
the second order derivatives of G, to MR ,(RY).

Finally, it completes the sketch of the proof of Theorem 1. Indeed, by Corollary 2, we now
have sufficient decay rates for the nonlinear functions F' and G to apply Lemmas 2 and 3 and
prove the convergence at infinity of the functions d?n, V(16) and d?(1/0). Likewise, by Theorem
6, we also have sufficient decay rates for the functions d?n, d?(10) and d®(10) to prove the
uniformity of the convergences mentioned in Proposition 5.

3Theorem 6 is supposed to be optimal. Indeed, it is commonly conjectured that the functions 8%n, 9*V (0)
and 0“Vwv are in MK?HQ‘(RN), at least in the case where |a| < N.
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4 Sketch of the proofs of Theorems 2 and 3

Theorems 2 and 3 both rely on the same argument: the explicit integration of the system of
equations (34) and (35). Indeed, this system presents the striking property to be integrable in
dimension two and in the axisymmetric case. In both cases, it reduces to a system of linear ordi-
nary differential equations of second order, which is entirely integrable in spherical coordinates,
ie.

o = (cos(f1), cos(f2) sin(f1), . ..,sin(B1) . ..sin(By-1)).
In particular, the integration of this system yields formulae (11) and (13).

Proposition 7. In the axisymmetric case, there is a constant o such that for every o =
(Ulw"70Aﬁ € SN;J:

1 o?
Moo ) = are ( 2 | 2o\ N N c? 1@0% N+1> ’ (36)
1-5+—=4)2 (1-5+=)>
O (0) = a0 n (37)

(1-9 +%2)%

Likewise, in dimension two, there are constants o and (3 such that for every o = (01,02) € St,

1 202 0109
7700(0') —ac ( 2, c2o? B c2 ' c2o? 2) 20 c2 2o o’ (38)
-3t (1_7+ 2) (1_7+ 2)
o1 09
O (0) = @ 2 | o2 + 2 | 2ol (39)
L=5+ = l=5+=

Remark 9. The result above in dimension two holds for every subsonic travelling wave of finite
energy, and not only for the axisymmetric ones.

The only remaining difficulty is now to compute the values of the coefficients o and 3. We
link them with the energy E(v) and the momentum P(v) by some integral relations obtained
by standard integrations by parts.

Lemma 6. Let v, a travelling wave for the Gross-Pitaevskii equation in dimension N > 2 of
finite energy and speed 0 < ¢ < \/2. Then, we have

L9+ =261 = Sp0) = ey = 1) [ ortutodio s [ (oo, ()

N
V2 <j < N,Pj(v) = Z/SNl 001N (0)do + > 000 (0)do. (41)

SN-1

Remark 10. Lemma 6 holds even if the travelling waves are not axisymmetric.

Theorems 2 and 3 then follow from equations (36), (37), (38), (39), (40) and (41), and from
the standard Pohozaev identities, which were derived in [8].

Lemma 7 ([8]). Let 0 < ¢ < /2. A finite energy solution v to equation (2) satisfies the two
identities

E(U)Z/RN 10102 (42)
vzgjgN,E(v)z/ ;01 + ep(v). (43)
RN

Remark 11. Lemma 7 holds even if the travelling waves are not axisymmetric and if the speed
¢ is not subsonic (¢ = 0 or ¢ > /2).
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5 Plan of the paper

The paper is divided in three parts. In the first part, we derive the improved decay estimates
for the travelling waves in the Gross-Pitaevskii equation stated in Theorem 6. In a first section,
we prove Lemmas 4 and 5 to obtain explicit integral expressions for some derivatives of the
functions 1 and 0, on which the proof of Theorem 6 relies. In the second section, we compute
the algebraic decay of those derivatives by the argument yet mentioned of J.L.. Bona and Yi A.
Li [4], A. de Bouard and J.C Saut [5] and M. Maris [15, 16]. Finally, we complete this section
by inferring Corollary 2.

The proof of Theorem 1 forms the core of the second part. The first ingredient is the pointwise
convergence at infinity of the kernels Ko, K; and L;;: it follows from the proofs of Lemma 1
and Theorem 5 in the first section. The second and third sections are devoted to the proof
of the pointwise convergence at infinity of the functions 7, 16 and of some of their derivatives
summed up in Proposition 4. It relies on Lemmas 2 and 3. In the fourth section, we deduce
from Ascoli-Arzela’s theorem and the improved decay estimates of the first part, the uniformity
of the convergence yet described in Proposition 5. Finally, the last section is devoted to the
proof of Proposition 6. Then, Theorem 1 follows from the remark that

Voo = 0007

and the derivation of equation (10) from equations (34) and (35).

The third part is mainly concerned with the proofs of Theorems 2 and 3. In the first section,
we integrate the system of equations (34) and (35) to deduce Proposition 7. In the second
section, we infer Lemma 6 to compute the values of the coefficients a and 3 in function of the
energy E(v) and the momentum P(v). Finally, we end the paper by deducing Corollary 1 from
Lemma 7.

1 Sharp decay of some derivatives of a travelling wave

We first improve the asymptotic decay estimates given in [9] by proving Theorem 6. We state
integral representations of the functions d?n, d?(0) and d3(1/) and estimate their algebraic
decay by the standard argument mentioned in the introduction.

1.1 Integral forms of the functions d?n, d*0 and d30

As mentioned above, the functions d?n, d?(y0) and d3(1f) express as linear combinations of
convolution integrals.

Proposition 8. Let 1 < j, k.l < N and z € RN, Then,

Bonfa) = [ Bo)F -y + [ 0K (Fle - y) ~ F@)dy
B(0,1)¢ B(0,1)

N
+ </SN—1 ajKO(y)ykdy> F(fﬂ) + 20; (/3(071)6 8f7kKZ(y)GZ(x — y)dy (44)

N-—-1

AN i\ —Y) — Gi(@ K (o
+/B(071) aj,sz(y)(Gz( y) Gz( ))dy-i- (/g a]KZ(y)ykdy> Gz( )) ,
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N
0% (V) (x ) =5 COWK; * Flz +C2ZakL”*G( ) + (/B(O 1)CakRi,j(y)Gi(x_y)dy
=1

=1 =

+ / Ok R (y)(Gile — y) — (@) + 3.V Ci(2))dy + / Ry (45)
B(0,1) N-1

(Gi(z) — y.VGi(:c))dy> ,

jkl ¢9

1\3\('3

( mF@—yMy+/‘ R K () (F(x —y) — F(x))dy
B(0,1)¢ B(07 )

</SN 0Ky ykdy> > +C2Z (/B(m O\ Li j (y)Gi(w — )dy

O Lij(y)(Gi(x —y) — Gi(x))dy + (/N 1 O Li (y)ykdy> Gi(@)

B(0.1)
(46)

)

o
N

T — 2 D (o —
Z; (/3(01 aklR ,J( )Gz( y)dy+/B( ) 8k71R1J(y)(GZ( y)
)

~Gilo) +9.9Gi(0) — 5 Gy + [ Ry )n(aGa)

— yvale(a:))dy -+ /N 8kRi,j(y)yl(Gi(m) — yVGZ(m)

+ 3G 1) ).

Proposition 8 is a straightforward consequence of Lemmas 4 and 5, so we postpone its proof
after their proofs.

Proof of Lemma 4. Consider ¢ €] — 2, 2[\{0}. On one hand, K is in K(R"), so, the function
Oy K belongs to L'(RY). On the other hand, f satisfies assumption (i), so, it is a continuous,
bounded function on RY. Therefore, by standard convolution theory, the distribution Og is
actually a continuous function on RY, which writes

Ve € RY, Opg(x) = . WK (y) f(x — y)dy.

Hence, we can compute

Org(x + tej) — Og(x) flz+tej —y) = flz—y)

” = oK (y) ; dy
RN
LK N — O K
and therefore,
Ohg(x + tej) — Ohg(x) _ OpK(y +tej) — OhK(y) oo\
/ / - t f@ - y)dy
OnK(y +tej) — OpK(y) A7
¥ ( Lo t y) f(@) (47)
WK (y+te) —WK(y) .. | p
o t (o =) = @)y,
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For the first term, we state

oK (y +te;) — 0K (y)
t

¥y € B(0,1)", Fx—y) = 5Ky f(z—y),

while, by assumption (i) and since K € IC(RY),

A
t(1+ [z —

0K (y + tej) — 0K (y)
t

t
Wy € B(0,1)", e /O 02K (y + se;)|ds

A
= 2N 1\N+2?
(1 + [z —yP¥)(y[ — 3)

f(:v—y)‘ <

so, by the dominated convergence theorem,

K (y +tej) — O K
/ kK (y ;) W) ¢y — 01K (y) f (x — y)dy.
B(0.1)¢ t—0 B(0,1)°

For the second term, we compute by integration by parts since K € (RY),

/( )8kK(y+t€j) — W) Kly+te) =KW, 4
B(0,1

t SN-1 t
K being in K(RY) once more, we get

K(y +tej) — K(y)
t

vy e SV

A t
Yk| < t/o |0; K (y + sej)|ds < A,

hence, by the dominated convergence theorem,

LK (y +te;) — O K
/ Ly ;) W) gy 05K (y)yndy.
B(0,1) t—0 JgN-1

For the last term, we find

/ K (y + tei) — 9K (y) (f(z—y)— f(z))dy
B(0,1)

_ / 0K (y + tej) — O K (y)
lyl<2]t|

t (fa =)~ f))dy

N / K (y+te;) — 0K (y)
20t <|y|<1

) (f& =) = f())dy.

On one hand, by assumption (ii) and since K € K(R"), we have

) (Flw =) — f())dy

/ 0K (y + tej) — 0K (y)
ly|<2]t]

< A 1 + 1 | |d
S ylay
It i<t \ |y + te;|N =2 |y 2

A d d t|d
<A / ]5/3+/ yN3+/ HyMl
[t \iyi<ate [y|¥=2  Jigi<oil |y + teN72 Jii<aiel |y + te; |V 2

< AVt o 0.
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On the other hand, we obtain likewise for 2|t| < |y| < 1,

oK (y +tej) — 0K (y)
t

A t
=0 = 1| < 2 [ 102, ke sy
Alyl
Tyl - eVt
A

< =

y

so, by the dominated convergence theorem,

/ oK (y + tei) — K (y) (F(z —y) — £(z))dy - 92K (y)(fx —y) — f(x))dy.
B(0,1) T IBO)

Finally, the function Oyg is differentiable in direction z; and, by equation (47), its partial deriva-

tive 6]2. .9 is given by formula (31). Moreover, the function dxg is actually of class C! on RV,
Indeed, by formula (31), 6? 9 1s continuous on RN, Tt follows from the continuity of f, as-
sumptions (i) and (i), the fact that K belongs to K(RY) and a standard application of the

dominated convergence theorem. O
We now turn to the proof of Lemma 5, which is similar.

Proof of Lemma 5. We begin by the proof of formula (32). Since f is a smooth function on RY
which satisfies assumptions (i) and (ii), we can state by standard Riesz operator theory,

Vz e RY g(x) = /

B(0,1)°

Ry () f ( — y)dy + / Ris(w)(f(x — ) — f(x))dy.

B(0,1)

In particular, ¢ is a continuous function on R (which can also be deduced from a standard
application of the dominated convergence theorem thanks to the continuity of f and assumptions

(i) and (7). Therefore, assuming ¢ €] — £, 1[\{0}, we compute
B(0,1)¢ BO.D) (48)
(f(x—i—tel —y)—fla—y) [lz+te) —f(x)) dy.
t t

On one hand, by assumption (i7),

Vy € B(0,1)%, |R;r(y

A t
< _
/ _t\y]N/O Of (z + seq — y)|ds

- A
T YN+ |z =y

)f(w+tez—y)—f(ﬂf—y)‘

so, by the dominated convergence theorem,

zH+teg—y)— flo—
/ Rjr(y) !t l yt) f=u)y, o Rjr(y)of (x —y)dy.
B(0,1)° B(0,1)°
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On the other hand, by assumption (4i7),

Rx(v) <f (et =)= flo=y) _Sletia) - f@))’

Yy € B(0,1),

A t
< t\y|N/ 01f (z + sep —y) — O f (x + ser)| ds
0

A
< —~ sup d2f Z)1s
v S | =)

therefore, by the dominated convergence theorem,

/ Rj,k<y><f<x+tez—y>—f<x—y> f(:c+tel)—f(a:)> u“
B(O,l)

t t

o Rix(y)(0if(x —y) — 91 f(x))dy.
—YJB(0,1)

Thus, the function g is differentiable in direction z; and, by equation (48), its partial derivative
0,9 is given by

Ve e RN, 9ig(x) = /

B(0,1)°

R 1(0)a1f (x — y)dy + / R () (Ouf (x — ) — f (x))dy. (49)

B(0,1)

Now, we integrate by parts the first term of the right member:

/ Rin(y)auf (x — y)dy = / OR; () f(x — y)dy + / Rin)nf (@ — y)dy. (50)
B(0,1)¢ B(0,1)c 1

SN—

It can be made rigorously by integrating by parts on B(0,R) \ B(0,1) for some large R and
taking the limit R — 400, using assumptions (i) and (7). Likewise, assumption (ii7) yields for
the second term

/B(O . Rjx(y)(Of(z —y) — Oif(x))dy = lim Rin()(@uf ( — ) — 0 f (x))dy.

=0 Jeclyl<1

However, we find by integrating by parts,
| R ) - sy
e<|y|<1
= [ R -y
e<|y|<1

_ / AR (y) f(x — y)dy + /
e<|y|<1

Riu() 2 fo — y)dy - / Ryt (@ — y)dy
S(0,¢) € SN-1

:/ s PRaR S =) = S @)y Y f))dy + /S i) (f(x = y) - (@)

(0,¢)

Sy SFNdy - [ RialmFe ) = f@) + .9 @)y

Now, we remark by assumption (7i7)

Vy € B(0,1), [0 Rk (y)(f(z —y) — f(2) +y.V[(2))| < val_l sup [d f(2)],

2€RN

22



/ L ORI =) = J@) + 3.5y

= IRk (y)(f(z —y) — flz) +y.V f(x))dy.
=0 JpB(0,1)

We also notice by assumption (ii7)
A

d2
N3 S [d*f(2)],

Yy € S(0,€), | Rjr(y)u(f(z —y) — f(x) +y.Vf(z))] <

therefore, 1
L R y) - 1)+ 9 @)y =0,
S(0,¢) e

€

Finally, it leads to

/ Rin(y)(Ouf(x —y) — Oif(x))dy = / AR 1 (y)(f(x —y) — f(z) +y.Vf(z))dy
B(0,1) B(0,1) (51)

- /SN1 Rip(yu(f(z—y) — f(z) +y.Vf(z))dy.

Finally, by combining equations (49), (50) and (51), the partial derivative d;g is given by formula
(32). Thus, the function g is actually of class C' on RY. Indeed, by formula (32), g is
continuous on RY. By a standard application of the dominated convergence theorem, it follows
from the smoothness of f and assumptions (4), (i4) and (i3i).

We now turn to formula (33) and we assume again that ¢ €] — 3, $[\{0}. Since f satisfies
assumptions (), (1) and (i4i), 9;g is continuous on R and satisfies formula (32),

Ve € RN, 9ig(z) = /
B(0,1)¢

AR (0) ( — y)dy + / AR () (f(x — ) — F(x)

B(0,1)

@y + [ Rwul7@) -y V@)

SN—l
Hence,
Aig(x + tem) — yg(x) _/ AR (y) flattem—y) — flz— y)dy n / OR; i (y)
t B(0,1)° t B(0,1)
(letion=p)—fa=y)_fotien)=iE),,
t t
(52)
Vi(z+ te?) — Vf(:r)) dy + /SN1 Rix(y) (f(fl? + te:,;) — f(x)
A (G teT) —-V/ (fv)> udy.

On one hand, by assumption (i7),

Yy € B(0,1)%, | R; 1 (y) Fz+tem —y) — f(z —y) ‘

A t
A

< Y
T YN A | = yPY)
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so, by the dominated convergence theorem,

/ OuR () LT = f) 19y, OR; 1.(y)Om f (x — y)dy.
B(0,1)¢

=0 JB(0,1)

On the other hand, assumption (iv) yields for every y € B(0, 1),

OR;

lﬂék(y)(f(aﬂrtem —y)— flz—y) — flz+tem) + f(2) + y.(Vf(z +tem) — V(z)))
A t

< t|y|N+1/0 |Om f(x 4+ sem —y) — Om f(x + sem) +y. VO f(z + sen)|ds
A

S T Sel%gld?’f(@!?

hence, by the dominated convergence theorem,

/ W <f($ +tem —y) — f(x —y) — flz +tem) + f(2) +y.(VI(z + ten)
B(0,1)c

—Vf<x>>)dy o [ AR O~ 1) = 0 (@) + 5.V @)y
B(0,1)

t—0
Finally, f is in C*°(R"), which gives

/szvl Rjr(y)y (f($ Flem) 2 J) |, VSt tem) - vf(t%)) dy

¢ v ¢

— ) YR 1Y) (Omf(z) — y. VO f(z))dy.

t—0 S§N—

Thus, the function 9;g is differentiable in direction z,, and, by equation (52), its partial derivative
9% g is given by

vz e RV, al%mg(x) = /

R (y)Om f (& — y)dy + / AR (y) O (@ — )
B(0,1)

B(0,1)
= 0@+ yVOL @)y + [ Risnu(0 1 (@) 590, (@)
(53)

Now, we integrate by parts the first term of the right member:

[ aRuwontc-wdy= [ Ry + [ AR
B(0,1)° B(0,1)¢ SN -1
flx —y)dy.

Similarly to equation (50), it can be made rigorously by integrating by parts on B(0, R)\ B(0,1)
for some large R and taking the limit R — 400, using assumptions (i) and (ii). Likewise,
assumption (iv) yields

(54)

/ DR 1 (4) (O (2 — ) — O f () + 9.V O f (2))dy
B(0,1)

= lim OR; 1Y) (Omf(x —y) — Omf(x) + 4.V f(z))dy.

=0 Jec|y|<1
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However, we compute by integrating by parts

/ <lyl<1 AR k(Y)Omf(x —y) — O f(2) +y.VOn f(z))dy

_ / O, Ryl (& — y)dy — / DR () ymf (@ — y)dy + / R (y) U™
e<Jyl<1 SN-1 S(0,¢) €

flao =)y~ [

e<lyl<1

O Rjk(y)dy Om f(z) + / OR; 1 (y)y.NV Oy f(z)dy

e<|y|<1

:/< < FmRikW)(flx—y) = flx) +y.V () - %d2f(g;)(y’y))dy
- /SNl Rk (Y)ym(f(x —y) — f(z) +y.Vf(z) — %de(fﬂ)(y, y))dy

[ AR (e~ )~ F@) + 5@ - G @) )y,
S(0,¢)

e
We then notice by assumption (iv) for every y € B(0, 1),
A

3
— sup [d°f(2)],
|y|N 1z€]RN

07 R ) (7@ — ) — F (@) + 3.V I (@) ~ 5 () ()] <
therefore,
[ BBk (f(a =) = ) 4097 (0) = 570
Zo g, Bk ) = @)+ y V1) = 3 S w0y

We also remark by assumption (iv) for every y € S(0,¢€),

sup |d*f ()],

2ERN

OB 4 ) (@~ 9) — F (@) + 3.9 (@) — 3T 9)| <

which gives

AR )~ F@) + V@)~ S F ) )y =, 0.
S(0,¢) R

€

Thus, we find
/ R 1Y) Omf(x —y) — O f () +y.VOn f(z))dy
B(0,1)
1
= /B(O ) O Rk (W) (f(x —y) — f(2) +y.Vf(z) - §d2f(x)(y7 ) dy (55)
1
- /SN1 DRk (W)ym(f(x = y) = (@) +y.V (@) = 5d* [ (@) (y,y))dy.
Finally, by equations (53), (54) and (55), the partial derivative al%mg is given by formula (33).
Thus, the function g is actually of class C? on RY. Indeed, by formula (33), 8l2,m9 is continuous

on R¥: it follows from the smoothness of f, assumptions (i), (i7), (i7) and (iv), and a standard
application of the dominated convergence theorem. O

We then complete the proof of Proposition 8.
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Proof of Proposition 8. By formulae (19) and (20), and Proposition 1, the functions F' and G
are C* on RN and equal to

{ F = Y0 91— ) [V (0)? + 202 — 20001 (6),
G =V (16).

on a neighbourhood of infinity, so, by Proposition 2, they satisfy all the assumptions of Lemmas
4 and 5.

Likewise, by Proposition 3, the kernels Ko, K; and Ljj, are in K(R”). Formula (44) is then
a consequence of equation (21) and Lemma 4, while formulae (45) and (46) follow from invoking
equation (24) and Lemmas 4 and 5. O

Remark 12. It seems possible to compute similar formulae for higher derivatives of the functions
n and 0: since it is useless here, we are not going to investigate this point any further. However,
it is probably a good way to prove the sharp decay of higher derivatives, i.e. to show that the
functions 0%n, 0*V(0) and 0*Vu are in MR, o |( N, at least in the case where |a| < N.

1.2 Sharp decay of the functions d?n, d*0 and d30

We now infer Theorem 6 from Proposition 8. We improve the asymptotic decay rate of the
functions d?n, d?0, d*v and d36 by the argument mentioned in the introduction. We first apply
it in the following lemma.

Lemma 8. Let 1 < j,k < N and K € K(RY). Consider a function f € C®(RYN) such that
(i) [ € LoRY) N MR (RY),
(i) Vf € L®RVN N M RNV

Then,
Pp(K = f)e MR, o(RM).

Proof. Let g = K * f. By assumptions (i) and (i), Lemma 4 yields

Ve € RY, 0%, g(x) = /B o B @Iy /B o (=) = )y

By assumption (i) and since K € IC(RY), the first term satisfies

/ 02 K (1) ( — y)dy
B(0,1)

‘$|N+2

<A (/ N t2107 LK ()| | f (z — y)|dy
B(0,1)°

" /B ol <y>\|x—y\N+2\f<x—y>|dy>

< A(HanKHMOo o (RY) ||f||L1 (RN)
—2

+ ||3j,kK||L1(B(o,1)c)Hfllﬁ LRY) HfHLoo(RN ) < A
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By assumption (i) and since K € K(RY), the second term verifies

o2 [ KW= 9) ~ f@)dy] < Al [ 103K )y
B(0,1) (0,1)
sup |V f(2)]
z€B(z,1)
’x‘N+2
<A————-< A
R N I
and likewise, by assumption (i) and since K € K(RY),
N+2 0;K (y)yrd <A™y
N2 [ oK 1) < 47T <4

Thus, the function g belongs to MJC{,O+2(RN).

We next prove a similar lemma for the composed Riesz kernels R; .
Lemma 9. Let 1 < j,k,l,m < N and consider a function f € C*(RY) such that
(i) f € L2RY) N M55 (RY),
(i) Vf e L®RY) N MR (RY),
(iii) d?f € L®°(RN) N MY (RY),

Then,
al(Rng * f) S M]%OJrl (RN)

Moreover, if [ also satisfies
(i) d3f € L(RN) N M3, (RY),

then,
O m( Rk * f) € M 5(RY).

Proof. Let g = Rj, * f. On one hand, by assumptions (i), (#i) and (i7i), Lemma 5 leads to

vz e RN, 9g(z) :/
B(0,1)¢

OR; () f(x — y)dy + /B oy MO =) = T

+u @y + [ Rialin(@) = 5V 1 @)y

By assumption (), the first term verifies

’x‘N—H

/ OR; 1 () F(x — y)dy
B(0,1)°

)

<af (@RI =)

)

+1OR; g (y)lle —y[V T f(z — y)l)dy

<A (/RN ‘f(t)’dH/B(o,l)c yale,k(y),dy> <A
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By assumption (7i7), the second term satisfies

|.Z"N+1

/ ARk (1) (F(x — ) — f(x) + .V f(z))dy
B(0,1)

< Ale/¥ / WRIaRw)ldy sup |d2F(2)
B(0,1) z€B(x,1)

|x]N+1
<A——-< A
Tl |2V T

and likewise, by assumptions (7) and (i7),

N+1
2] < A

N+1
|| 1+ |x‘2N =

[ R n7@) - u s < 4
Hence, the derivative 0;(R; * f) is in M3, (RY).

On the other hand, by assumptions (i), (i7), (ii7) and (iv), Lemma 5 also gives

Vo € RN, 02,.9(x) = / O Ry (9) (& — y)dy + / O, Rin(w)(f(x — ) — f(x)
B(0,1)¢ B(0,1)
+V @) = G @)+ [ R0 (@)

~y 0@y + [ AR unlf@) =9V @)

+ S () )y,

Likewise, by assumption (i), the first term satisfies

|$‘N+2

/ O Ry oly) f (x — y)dy| < A / Iy *2182, R ()| F (z — )
B(0,1)° B(0,1)¢

10, m Rk W)l — yI¥ 2 f (@ — y))dy

<A </ |f(t)|dt +/ ’al%ij,k(y)’dy> < A.
RN B(0,1)¢

For the second term, assumption (iv) yields

02| [ ORI )~ F) T ) — 5 )0

)

< Alz|V*? / Y 10R Ry ()ldy sup |F(2)]

B(0,1) 2€B(z,1)
T N+2
< Aluw\, <A,
while for the third term, assumptions (i) and (ii7) give
2| [ R tn(on @)~y Fo sy < AT <4
sv-1 0 " " T4 2N T
and likewise, for the last term, by assumptions (i), (i7) and (7i7),
2| [ ARt () — 097 0) + 3 S| < AL <4
sN-1 " 2 7 Tl PN T

Thus, the function 8l27m(Rj7k « f) belongs to MgP,,(RY).

28



Finally, Theorem 6 follows from Lemmas 8 and 9.

Proof of Theorem 6. Equation (21) writes

N
U:KO*F+2CZKj*Gj-
=1

However, by Proposition 3, the kernels Ky and K; are in (RY), whereas by formulae (19) and
(20), and Propositions 1 and 2, the functions F' and G satisfy all the assumptions of Lemma 8.
Thus, the function d?n belongs to M}@_Q(RN) by Lemma 8.

Likewise, equation (24) states

N N
8J(¢9) = ng o ZLJ'JC * Gy, + ZRng * G.
k=1 k=1

Then, Propositions 1, 2 and 3, and formulae (19) and (20) yield for every I € {1,...,N} and
r € RY,
[N oK+ F) ()] =2V Q) * F(x))]
<A [ (™0 0P = )]+ 1 0)

o = yINHHF (2 = y)])dy

<a( [ s [ o wi) <A

Therefore, the function 9)(Kj = F) is in M3, (R™). Likewise, the functions 9;(Lj; * G),) belong
to MJC\’[OH(RN ), 80, since the functions Gy, satisfy all the assumptions of Lemma 9, it follows from
this lemma that the function d?(¥) also belongs to Mg?, ; (RY).

The proof is identical for the function d>(1/f) by Lemmas 8 and 9, and formula (24), so, we
omit it.

Finally, by Proposition 1, the function d?v is C* on R and equal to

02,0 = [ /1= n(i0%,0 — 9;00,0) — 2~ d I Gk e

on a neighbourhood of infinity. Since the functions Vn, V(¥0), d?n and d?(y0) are bounded and
belong to respectively Mge,; (RY), Mg(RY), Mge,,(RY) and Mge,, (RY), and since n converges
to 0 at infinity by Proposition 2, d?v belongs to M]‘f,o+1(RN ). O

Before turning to the first order development at infinity of the function v, we establish
Corollary 2.

Proof of Corollary 2. Corollary 2 is a consequence of the superlinear nature of F' and G. By
formulae (19) and (20), and Proposition 1, the functions F' and G' are C* on RY and equal to

2(1-n)

F= vk 2(1 —n)|VO]? + 2% — 21010
G =nVeo
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on B(0,3Rp)¢. Thus, we compute for every x € B(0,3R)¢,
[V (| (2)] + |G (@)]) <Al (V@) ? + V(@) + [n()]* + [n(2)|[Vo(2)]),

2PV VE ()] + VG ()]) <Al (|d2n(2)|[ V()] + V() + [n(2)][ V()]
+HVn(@)[[VO(@)* + |VO(x)||d*0(z)| + [Vn(x)||VO(2)]
+Hn(a)||d*0(x)]),

PN PG ()| <Al PR (1 dPn()]|VO(@)| + V()] d*6(2)]
+[n(a)]|d*0(x))).
Corollary 2 then follows from Proposition 2 and Theorem 6. 0

2 Asymptotic development at first order

Now, we consider the existence of a first order asymptotic expansion for the subsonic travelling
waves of finite energy. By the method mentioned in the introduction, we first deduce the
pointwise convergence of the Gross-Pitaevskii kernels, then, the pointwise convergence of all the
convolution integrals which appear in formulae (21) and (24). We finish the proof of Theorem 1
by showing the convergences above are actually uniform on the sphere SV ~! and by computing
a partial differential equation for the first order terms of this asymptotic expansion.

2.1 Pointwise convergence of Gross-Pitaevskii kernels

We first prove Theorem 5, i.e. the pointwise convergence of the Gross-Pitaevskii kernels Ko, K;
and L;;. As claimed previously in the introduction, it follows from the form of their Fourier
transforms through Lemma 1, whose proof is mentioned below.

Proof of Lemma 1. Consider some integer j € {1,...,N}. The Fourier transform of K belongs
to IC(RY). Therefore, the function f given by

o € RY, f(x) = (=iz;)" T K (2),

is continuous on RY. Indeed, its Fourier transform
f=0V"K
belongs to L'(RY). Moreover, if g € S(RY), we compute
<zjf,g>=< fixjg>=—i < f,@ >=—i < f,ajg >,

S0, fbeing in L'(RV), we can write

<apfg=-i [ oo
Then, we deduce from an integration by parts that for every A > 0,

<uifg>=i [  of(e©ds+i /B o, 270 — g0

B(0,\)¢

ig(0) =
S CCLS
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However, g is in S(RY), therefore,

which yields

B(0,\)

<o = g [ 3@ ( [ 2if @ s [ afeein - ag

1 N
5 Lo §jf(€)d£> d.

Therefore, by standard duality, the tempered distribution x; f is equal to the tempered distri-
bution ¥ given for every z € RN by

— L vy iz.£ F il _ l Ny
W) (%)N( Lo 2@ [ ot —nagy [ &f(&)c%)

_ N R ()6t N R () (el
2m)N (/19(07)\)6 9, K(§)e d§+/ 0; K(§)(e 1)d¢

B(0,))
1 A~
w3 ] g 1K<£>d£>.
S(0,0)

Indeed, ¥ is a tempered distribution because, since K is in K(RY), ¥ belongs to Ll (RY) and
satisfies
vz € RY, | (2)] < A(1 + |z).

Moreover, since K is in IE(]RN ) once more, by a standard application of the dominated conver-
gence theorem, W is also continuous on RY. Thus, the function z — z; f(z) = x;(—iz;)N 1K ()
is continuous on RY and verifies for every z € RY,

(i) K@) = ( [ 2B @t [ N R(E) (e nyde

B(0,\)
41 /
A Jso

Then, it only remains to choose A = % and x = Ro — y to get formula (29). O

)

fjajv‘lf?@)d&) .
A)

Theorem 5 is then a consequence of Lemma 1.

Proof of Theorem 5. Let 1 < j < N and let us first make the additional assumption
a=0.

We will remove it later. The function K is a rational fraction only singular at the origin, so
all its derivatives are also rational fractions only singular at the origin. Thus, we can state for
every i € {0,1,2},

d;
o > Pr;
oY = 2 (56)
> Qi
k=0

where
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e the functions P, ; and @) ; are homogeneous polynomial functions either equal to 0 or of

degree k.
di d/i
e the polynomial functions P; = ) P, and Q; = ) Qy,; are relatively prime.
k=0 k=0

e the polynomial function @Q; does not vanish on R \ {0}.

Moreover, consider ¢ € RY \ {0} and denote

° l(f) = { mln{k € {0’ o ’dz}’Pkﬂ/(g) 7é O}’ if Jk € {07 s 7d1}?Pk,z(£) # 07

400, otherwise,
o I'(¢) =min{k € {0,...,d;}, Qri(£) # 0}.

The functions I and I’ are well-defined on R \ {0}, and we can set

RICI
Ve € RN\ (0}, Ri(e) = § rou@sn-aigy i i 1O # o
0, otherwise.

Now, we claim

Claim 1. The function R; belongs to MR, ;_ L(RY) and satisfies

6 € RV (0 g0 R (§) o RO 7

Proof of Claim 1. The case [(§) = +o00 being straightforward since

_ /¢ %R_kpk,i(g)
oK () = =0 = 0= Ri(9),

R i .
> RNT=1=kQy i (€)
k=0

consider R > 0 and ¢ € RV \ {0} such that

1(€) # +oo.

Formula (56) becomes

d;
Z RP,;(€)

RN+i—17J R %RN—H 1k 4(6) R—+o00 RN+z—1_l'(§)+l(£)Ql/(g)ﬂ'(f)
k=0

However, the function K is in I/C\(]RN ), which means in particular that

oNtI1R (5>‘ <4 (58)

RN+z 177 R |£|N+zfl

Ve e RN\

Thus, we first deduce

1 §
aN+Z 1K ( > — 5 i ey = Rz )
RN+i-1Y) R) Reioo NTEIHOLO Q) (€ ©
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and secondly, by taking the limit R — +oco in inequality (58),

A
RO < g

i.e. the function R; belongs to My, ;(RY). O

Now, we turn back to the proof of Theorem 5. Consider (o,y) € S¥~! x RV such that
oj #0

and remark once again that the function K is in I/C\(RN ). By Lemma 1, we can state for every
positive number R sufficiently large

‘N
NK(Ro—y) = ON R (£)eis(Bav)g ONR
REK (R —y) (27m(o; — %)V </B(o,}{)c j K (G £+/B(O,}%) RS (59)

(e o0 —1)d¢ + R / SEANES <£>eif'<R“—y>d§> :
500, %)

1
(Ovﬁ

Our goal is to prove the convergence of each term of the right member towards a bounded
measurable function independent of y.

Step 1. The first term of the right member of equation (59) satisfies

~ . 1 A .
/ ONK(&)etHovge — —— / Ro(€)e’ode + / &iR1(&)ecode | .
B(O,%)C R—+o0c0 ’LUJ B(O,l)c s§N—1

Indeed, for every A > %,

/ INK (€)e(Fovdg = lim ONK (€)es oy e,
B(0,%)°

A——+00 %<‘§|<>\

Moreover, by integrating by parts,

~ . 1 ~ .
aNK 5)615-(R0—y)d§ :/ 8NK(€>8'<626'(RJ_y))d§
/1§<|£<A K i(Roj —y;) Jicgen ? !

1 / N+17( ¢\ i€ (Ro—y)
- - (- ANFLR (¢)e v g
i(Roj — yj) ( £ <gl<A / ©)

41 / §ONEK(€)eisFr—vde — R / 13
A Js(on)

S(0,%)
N 17~ €. (Ro—
OV R (£ y>d5) .

However, K is in K(RY), therefore,

/ 8N+1_[?(£)ei£.(Ro—y)d€ N 8§V+1j€(f)€i€'(Rg—y)d§7
£<lel<A A=+ JB(0,%)°

while
A)\N—l
AN+2 )\—>—-l>—oo

1

1 / &0V R(6)e'e o) gg| <
A Jso.0)
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Thus, we obtain

A (R Y S — / ONFLR (£)i€ (Ro=v) ge
/B(OJJC RO i(Roj —yj) B(0,L)e ©

(60)
"R ONEK (e Ro—v)ge | |
/s(o,}?,) 0 K ©e 6)

On one hand, the first term verifies
1 8]]‘\7-&-1[?(6)61'5.(1%073/)(1& _ 1 / N+ <5) 61 dg.
R B(O’%)c B( R

However, by assertion (57),

and, since K € K(RY),

Ve € B(0,1)°,

= e

hence, by the dominated convergence theorem,

1 ~ . _
= ONTIK (g)eFovlge  — Ro(€)e™7de.
R /B4’ © R—too Jp(0,1)¢ 216)

On the other hand, the second terms writes

~ - _ 1 S (&N ie(o—
AN i&.(Ro—y) - AN > i§.(0—%)
/s(o,}%) 0 KE)e =Ry /SN—1 SOTK <R> ‘ e

Likewise, by assertion (57),

and, since K € K(RY),

ve e SV < A,

RN ™Y R

S9N <5> Gt (o= 1)

which gives by the dominated convergence theorem,

[ GO R @ [ e

R—+o00 JgN-
In conclusion, equation (60) yields

/ oY K (&)etHovde  — o </ Ry(€)e"7de + / ij1(5)6i5'0d5> 7
B(0 1 )e R—+o00 105 B(0,1)¢ gN—1

'R

which ends the proof of Step 1.
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Step 2. The second term of the right member of equation (59) satisfies

[ R e Ry (€)(€% — 1)de.
B(0,4) R—+o0 JB(0,1)

Indeed, we have

N B (6)(eEBo—v) _ 1)q :/ N R <€> GET—B)  1)de.
froy 2RO e =giv [ R () i

’%)
Likewise, by assertion (57),

R (5) o o,

R—+o00

and, since K € K(RY), we have for every R > 2|y|,

1 - . y A A
V¢ € B(0,1), |RN63NK <]£~2> (o= %) — 1)‘ < G ‘5.(0 - %)‘ < eV

Hence, the dominated convergence theorem gives

/ oK) —1)dg | — Ri(€)(e"%7 = 1)de,
B(O,%) R—+o00 B(0,1)

which is the desired result.

Step 3. The last term of the right member of equation (59) verifies

R GON TR (et vldg  — & Ro(§)e™7de.
5(07%) R—+4o0 SN-1

Indeed, we compute
P 1 (€ oz
aAN-1 i€.(Ro—y) j¢ AN-1 S i€.(0—%)
R/S(%)g]aj R()e dE = =y /Sm §ONIR (R> e

However, by assertion (57),

I vap (€
RN_laj K <R> R—>—-&>-OO R0(£)7
and, since K € K(RY),
veesV 1L canai (8 geen| < 4
| RN-157Y R -

which yields by the dominated convergence theorem,

R[ - gof RO o [ gRa©esdg,
S(0,%)

R _
% — 400 SN-1

Finally, by equation (59), and Steps 1, 2 and 3, we conclude

RYK(Ro —y) =  Kulo),
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where K, is given by

Z‘N

_ .o _ . i&.o
(QWUj)N (/B(O,l) Rl (f)(e Ddf + /SNl éjRO(f)e dg

—L i&.o ' ito >
z‘aj</B(071)CR2(5)e d£+/SN1 € Ry (€)eS7 de )

It then only remains to show that the function K, is uniformly bounded on the sphere SN—1.

Ky (o) =
(61)

Indeed, up to choose another integer j € {1,..., N}, we can suppose that
1 ; < 1.

We then deduce from Claim 1 and from this additional assumption that

d¢ de¢ d§ dg
x — A TeIN—1
Hecl@)] = A </B(0,1) SR +/SN L €N -2 +/ Bo1e [N +/SN v gV 1)

so, the function K., is uniformly bounded on SV¥—1,

Now, we complete the proof of Theorem 5 by considering the case

a # 0.

We first compute
0K (&) =il K (€).
We then consider 3 € NV such that |3| = |a| and denote Lg, the tempered distribution of

Fourier transform

Ly =0°9°K.

We claim that the function I/L; belongs to IE(RN ). Indeed, by Leibnitz’s formula,

ve € RV \ {0}, Ls(¢) = °(Iev K (&) = Y A, 507 ()07 K (¢),
0<~<p

S0, since K€ IE(RN),

—~ €| lel=hl
(1+ [EP)ILa()] < AQ+ ¢ <
’ 0§<ﬁ (1+ [g[2)[€[P=1

Therefore, the function Lﬁ is in LOO(]RN ) N M. OO(RN ). Likewise, a straightforward inductive
argument for the derivatives of ng yields that Lg is a rational fraction which is only singular at

the origin and belongs to IC(RN ). By the proof ahead for the case ae = 0, there exists a bounded
measurable function Lg o, such that

RNL3y(Ro —y) — Lgeo(0).

R—+o00

Moreover, we compute
Ls(x) = ()P0 K (2),
S0,

RN (=i)P\(Ro — )P0 K (Ro — y Y) oo Loeo(@);
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and,
RN K (Ro —y)  —  illLg (o).

R—+o0c0
However, we can always choose 3 such that
1
‘Uﬁ| 2 el
2
S0,
Z’\@IL N
— o)l < 2 max co(SN—1Y.
3 L0o(@)| < N mant Ly ol oy

Thus, there is a bounded measurable function K2 on the sphere S¥~! such that

RNFlelgr K (Ro — y y) = K0,

which completes the proof of Theorem 5. O

One application of Theorem 5 is given by the next corollary.

Corollary 3. Let 1 < j,k < N, a € NV and ¢ € SVN~1. There exist bounded measurable
Junctions K§ o, K5 and L) oo O the sphere SN~1 such that

j7m

RNHg2 Ko (Ro — y) Mt K§ (o),
vy e RV, { RN K;(Ro —y) — K9 (0),

R—+oo I
RNHelgaL, 1 (R — ) it LSy oo(0).

Proof. We infer from formulae (22), (23) and (25) that Ko, I/(\J and Iij\k are rational fractions

which are only singular at the origin and belong to IE(]RN ). Corollary 3 is then a consequence
of Theorem 5. O

Remark 13. Formula (61) gives an expression of the limit K in function of the kernel K. It
is quite involved to compute explicitly such an expression. However, we can conjecture the limit
of the non-isotropic kernels Ko, K; and L;j. Indeed, consider for instance the kernel Ky. By
formula (22), its Fourier transform writes

Rol6) = o
ST el 2l - 2

Turning back to the proof of Theorem 5, we remark that the limit at infinity of K is formally
identical to the limit at infinity of the kernel Ry whose Fourier transform is

€
2167 — c2¢}

Ro(¢) =

Indeed, the only terms which appear in the limit at infinity of the kernel K are the homogeneous
terms of lowest degree of the numerator and denominator of Ky. Moreover, up to a change of
variables, the kernel Ry is related to the composed Riesz kernels. Indeed, it is equal to

0T )

Jj=1
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Since we know the limit at infinity of the composed Riesz kernels by formula (30), we deduce

that , s
rHa-9)= ¢ No?
Kooo(0) = Ryoo(0) = — 22 (1 — L | (62)
87r 2 ( - % + ?1) 2 - % + 2 1

Likewise, by formulae (23) and (25), we can compute formally the limit at infinity of the kernel

K;
’ ra-<) s 2 _sart N(1—9) %100,

2 020'%
2 + 2

and of the kernel L;

5, 1+5k 1+1

F(%) c2 % 5j,k( — 62> 2 N(l — %) 85,1 =6k, 1+20. O
Lj,k’OO(O-) - 2 i (1 N 5) c2 N B c2 020'1 N+2
e (-5 +50)5 A-5+507% g
— j7k+NO'jUk>.

Formulae (62), (63) and (64) lead to Conjecture 1 as we will see in Section 2.3.

2.2 Pointwise convergence of convolution integrals involving the Gross-Pi-
taevskii kernels

Now, we turn to the pointwise convergence of all the convolution integrals involving the Gross-
Pitaevskii kernels Ko, K; and L; .

Proposition 9. Let 0 € S¥=1, 1 < j,k < N and o € NV such that |a| < 2. Then, the following
assertion holds

RNHelg(K « f)(Ro) — K% (o) . f(x)dx

R—+o00

for K, either equal to Ko, K; or Lj, and f either equal to F', G or Gy.

The proof of Proposition 9 is a straightforward consequence of Corollaries 2 and 3, and
Lemma, 2, so we postpone its proof after the proof of Lemma 2.

Proof of Lemma 2. We divide the proof in three steps which correspond to each desired asser-
tion.

Step 1. The next assertion holds

RNg(Ro) | = Kel(o) [ f()da

where Ko denotes the bounded measurable function given by Theorem 5.
Indeed, consider R > 0 and write the expression of the function g
RYg(Ro) = [ RYK(Ro =) f)dy

(65)
B /|R o Ko=) )y + [ RYE(Re - f)dy,

R
\Ro—y\>5
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On one hand, by assumption (i) and since K € K(RN),

/ RVE(Ro — y)f(y)dy
|Ro—y|<%

_ M_ } RN K(R(o — 2))f(R=)d=

NI

R2N
<A d
- /U—z|§ (1+ RN2N) (RN Ty — 2]V -1) "

1
2

A

A / dz 0
— .
= pN-1 ozl 122N|o — 2[N-1 rioo
On the other hand, by Theorem 5,

RY1 oy 2 K (RO = y) f(y) B Fool0)f (),

while by assumption (i) and since K € IC(RY),

ARN - A
|Ro —y|N (14 [y2V) = 1+ |y|>N’

R (&
we B (Ro. g ) IRNK (R~ ) f)] <
hence, by the dominated convergence theorem,

/ RVK(Ro —y)f()dy — Kwlo) | f(o)de,
|Ro—y|>%&

R—+o00 RN
which gives the desired result by equation (65).

Step 2. The following assertion is valid

R 0j9(Ro) | = Ki(o) | f)de.

where K2 denotes the bounded measurable function given by Theorem 5.

The proof is quite similar to the proof of Step 1. Indeed, consider R > 0 and state likewise

RNT19,9(Ro) = / RN, K (Ro — y) f(y)dy + / RNT9, K (Ro — )
|Ro—y|< % |Ro—y|> % (66)
fy)dy.
On one hand, by assumption (i) and since K € K(RY),

‘/IR <k RY 10K (Ro — y) f(y)dy
o—y|<3F

R2N+1
= A/ 1 1 dz
lo—zl<i (1 + R2N|2]2N)(RN 2|0 — 2|V 72)

A
< = — 0.
RN*Q R—+4o00

On the other hand, by Theorem 5,

RN 00K (R =) (y) | = K2 (0)f(w).

while by assumption (i) and since K € K(RY),

ARN—H A
<
|Ro — y|NFL1 + [y2V) = 1+ [y|>N’

Vy € B (Ra, ];) ,[RNTY0, K (Ro — y) f(y)] <
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hence, by the dominated convergence theorem,

/ RVY0,K (Ro — y)f(y)dy — KL(o) [ fla)de,
\Ra—y|>§ R—+o0 RN

which ends the proof of Step 2 by equation (66).
Step 3. The assertion

RVV02,9(Ro)  —  KIF(o) [ fla)da
’ R—+o00 RN

holds if KZF denotes the bounded measurable function defined in Theorem 5.

Indeed, Lemma 4 gives

Frgtho) = [ KGR~y [ 5K R ) F(R)y

+ ( /SN_I O K (y)ykdy> f(Ro),

which yields by an integration by parts and the change of variables z = Ro — y,

RNT292 g(Ro) =RN T2 / . &2 K (Ro — 2) f(2)dz + RN T2 /
B(Ro,&)e B(Ro,2)

(f(2) = f(Ro))dz + 2RV ! (/S(D

8?7kK(RO' —2)
(67)
K (y)ykdy> f(Ro).

7%)
On one hand, we compute by assumption (i) and since K € K(RY),

N+1
F(Ro)| < 2B / Ay A
5(0,%)

N+1 -
" 1+ 2N WV S BN poie

/ 0; K (y)yrdy
5(0,%)
On the other hand, by assumption (i) and since K € KC(RY), we find

RN+2

[, ko = (1) - 1Rz
B(Ro,3)

SARN“( /B % s V)l + / a2

(Ro1) |Ro — 2|N ™2 yeB(Ro.1) 1<|Ro—z|< i |Ro — z[NH

sup \Vf(y)l>

yGB(Ra,g
< A

—
“RN-1 p i o

Finally, Theorem 5 gives

RV, w02 K(Ro—2)f(z) — KF(o)f(2),

|Ro—z|>% R t00
while by assumption (i) and since K € IC(RY),

ARN+2 A
<
|Ro — 2|N+2(1 4 |2]2N) = 14 |2]2NV’

Vze B (Ra, ];) ,|RNT207 K (Ro — 2) f(2)| <
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hence, by the dominated convergence theorem,

0?2, K(Ro — 2)f(2)dz — Kjk flx)dz,
Jo iy, B0 =211z 2 KEG0) [ 10
which ends the proofs of Step 3 and Lemma 2 by equation (67). O

Before investigating the pointwise convergence of the convolution integrals involving the com-
posed Riesz kernels, we complete the proof of Proposition 9.

Proof of Proposition 9. By Corollary 2, the functions F' and G satisfy the assumptions (i) and
(i1) of Lemma 2. Moreover, the functions Ky, K; and LJ % belong to K(RY) by Proposition
3 and their Fourier transforms are rational fractions in IC(]RN ), only singular at the origin by
formulae (22), (23) and (25). Thus, Proposition 9 follows from Lemma 2 applied to the kernels
Ko, K; and Lj, and to the functions F' and G. O

2.3 Pointwise convergence of convolution integrals involving the composed
Riesz kernels

We now establish Proposition 4 by studying the pointwise convergence of the convolution inte-
grals involving the composed Riesz kernels R; .

Proposition 10. Let 1 < j,k,l < N and o € SV~ Then, we have

N
RNRjyk * Gk(RU) R—:)-oo z( 2)((5 — NUjUk) f]RN Gk(x)dx,

RNHLO R, i+ G(Ro)  — M((N + 2)oj0,01 — 05 k01 — 050K — 05105) Jpn Gk

R—4o00 2772

Proof. By Corollary 2, the functions Gy verify the assumptions (i), (i7) and (iiz) of Lemma 3.
Thus, Proposition 10 follows from Lemma 3 and it only remains to prove this lemma. O

Proof of Lemma 3. We split the proof in two steps which correspond to each desired assertion.

Step 1. We have

Rg(Re) — ), N BE
9(R0) = 5 ik = Vo)

Indeed, equation (30) yields for every R > 0,

r(§)RN 8 kly*> — Ny;yi 8 kly> — Nyjyi
RNg(Ro) =—25— / = 122 f(Ro — y)dy + / > !
T \Jysz N w<d  lyN T

(f(Ro —y) — f(RU))dy>,

so, by the change of variable z = Ro — v,

D(3)R 8y4lRo — 22 — N(Ro, — 3)(Roy — )
N : : J J
RYg(Ro) = Cony (/RU o / T f(2)dz s
dj | Ro — 2> — N(Ro; — 2j)(Roy — z1)
Jr/|Ra 2<B : |Ro — Z|jN+2 ’ (f(z) — f(Ra))dz) .
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However, on one hand, we compute
(f(z) = f(Ro))dz

RN / 3jk|Ro — 2> = N(Roj — z;)(Rog — z)
|Rafz|§§ |RU - Z‘NJFQ
dz
<ar” [ swp V()
|Ro—z|< 2 [Ro — Z|N_1a:eB(Ra,§
ARNH
STE RN piloe
On the other hand, we find
§jk|Ro — 2| — N(Roj — z;)(Roy — 2)
RNl‘RU—z\>§ ’ ’RO__Z‘JNJFQJ f(Z) R;oo (6],k_N0']0'k)f( )
Moreover, assumption (i) yields
R ¢ (S'k‘RO'—ZP—N(RU‘—Z‘)(RUk—Zk) A
B v N |9, J T ~j <
Vz € <Ra,2> R Ro — 2| V72 f(2) S TT e
so, by the dominated convergence theorem,
(Sj,k|R0' - Z|2 - N(RO']' — Zj)(RO'k - Zk)
’RU—Z’N+2 f(Z)dZ R—j—oo (5j,k_NUjak) /]RN f7

RN/
R
|Ro—z|>%

which leads to the desired result by equation (68).
Now, we show the second assertion, which relies on equation (32).

Step 2. We have
KO+ 6jl0'k; + 6k,lo'j) + (N + 2)0’j0’k0'l) /RN f(x)dl‘

NT(§
R¥og(Re) — 2B,
R—+4o00  9n7%
The proof is rather similar to the previous one. Indeed, consider R > 0 and integrate equation

(32) by parts:
d19(Ro) = / L OiRjk(y) f(Ro — y)dy+/ L OR;k(y)(f(Ro —y) — [(Ro)
B(0,%)e B(0,3)

UV Ry + [ RisuF(R) 9 (o)

By the change of variable z = Ro — vy, it becomes
RN*19g(Ro) =RN ! / O R; 1(Ro — 2)f(2)dz + RN T / O R; 1 (Ro — 2)
B(Ro,8)e B(Ro, )
(1) = JRo) + (Ro = .9 Rz 4 2RY [ Ristoptso) ()
)
—y.Vf(Ro))dy.
Now, by assumptions (¢) and (i)
1 R
< ARN
= Ak <1+R2N * 1+R2N+1> Rteo

(W)y(f(Ro) +y.Vf(Ro))dy

/ . ik
S(Oaf)
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while by assumptions (iii),

RN+1

/ Ry (Ro — 2)(f(z) ~ [(Ro) + (Ro — 2).V f(Ro))d
B(Ro,3)

dz
SARN“/ ———— sup |d*f(x)|
B(Ro, %) |Ro — Z’N_lxeB(Ra,g)

RN+2

<A——+— 0.
- 1+ R2N+2 R—>—-§>—oo

However, we compute

RN+21 RaleJC(RO' — z)f(z) — ((N + 2)0’j0k0'l — (5j,k0'l + (5]"10']C + (5]6,10']‘))‘]"(2’),

‘RO’—Z‘>§ R—+o00

and by assumption (7),

A

R\ ni1
Vz e B <RO’, 2) , R |ale7k(RU — Z)f(2)| < W»

so, by the dominated convergence theorem,

RNHL /R o8 OR;k(Ro — z)f(2)dz
o—z|>%

— (N +2)ojor01 — (6601 + 050K + 5k,l0j))/ f(z)dz,
R—+o00 RN

which completes the proofs of Step 2 and of Lemma 3 by equation (69). O
We are now in position to show Proposition 4.

Proof of Proposition 4. It follows from equations (21) and (24), and from Propositions 9 and

10 that there exist bounded measurable functions 7., ngo, 9?;0, ng’ok and 0&’“ such that for every
oe SN,
RNn(R ,

n( U) R;oo 7700(0)

RN 0pn(Ro) | = 1o(0),
RN06(Ro) " 0l (0),

ik
RNT20%,n(Ro) . e (o),

RN*192,0(Ro) R 025 (o).

In particular, we can compute for every o € SV 1,

N
Mo(0) = Kooo() /R () + 2c; Kiolo) [ | Gyla)da (70)
; c N IN@
0l (o) = §Kj7oo(a) /RN F(z)dx + I;(CZLJ-JC’OO(U) + 2Er2];])(5j7k — Nojoy)) /]RN Gi(x)dx. (71)

Thus, it only remains to consider the existence of the function 6. It follows from the next
lemma.
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Lemma 10. Let f € CYRY,C) and M > 1. Assume that for every j € {1,...,N}, there is a
bounded function fl, defined on the sphere SN—1 such that

vo e SV RN, f(Ro) | = (o),

and that
flz) — Ax€C.

|z| =00

Then,

Vo € SV RM=Y(f(Ro) — Aso) e foo(o)

Proof of Lemma 10. Indeed, f belongs to C'(RY,C) and converges to Ay at infinity, so, since
M > 1, we can state

+oo IV
VR > 1, f(Ro) — / Za f(ro)o;dr.

Moreover, we have
N

al 1 . 1
S 0stroey = g Skl + g (;).

therefore,

R

Nk 1 N .
/ ]Z; 9 f(ro)ojdr = (M —1)RM-1 ; folo)oj+ o <RMl> ;

which yields

RYTH(f(Ro) = Aoc) | = = _1fo fool0)-
]

At this point, we notice that the function 8 satisfies all the assumptions of Lemma 10 with
M = N and Ay, = 0. Thus, there is a bounded measurable function 0., such that

R—+o00

N
_ 1 .
RN'0(Ro)  —  Ouo(0) = N1 §1 ;0% (o)

Moreover, by equation (71), we compute the next more explicit form of 0
1 o N N
Uol0) = =1 <2 <; UjKa}oo(U)) L F@)dr+ ; <02 ; i L k00 (0)

72
(N - DIr(5) > )
- —%ak o G(z)dx.
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Remark 14. Conjecture 1 follows from formulae (70) and (72). Indeed, in the first section of
the second part, we computed formally the values of Kq o, Kjo0 and L;j o (see formulae (62),
(63) and (64)). By equations (70) and (72), it only remains to compute the values of [ F(z)dz
and fRN Gr(z)dx to get explicit expressions of the limits 75, and 6. In the third part, we will
compute such integrals and we will obtain that

/R o)z = 2((4 ~ N)E@) + e(N ~ 3)p(v))

and

Gr(x)dxr = 2P (v).
RN

Finally, by equations (62), (63), (64), (70) and (72), it yields the value of the functions 7o,

(o) = c;(rg) <1 C;)N;d ((4_2NCE(U)+(2+ N2_3c2)p(v)) <( _C;jrcz;g)g

NU% 2\ & Noyo;
a —2(1-2)Y P ; :
(1—C§+°’2§%)N2+2> ( 2>,§ ]()(1—05*625%)%”

2 c20?
—T Tt )

Since v is equal to O, it leads formally to Conjecture 1.

2.4 Uniformity of the convergence

Now, we show the uniformity of the previous pointwise convergence. Actually, Proposition 5
even yields a little more. Indeed, the functions o — R™¥n(Ro) and o — RN~10(Ra) converge to
Noo, Tespectively ., in C1(SV1), respectively C?2(SV~1), when R tends to 4+o00. As claimed in
the introduction, it follows from the decay estimates of Theorem 6 and Ascoli-Arzela’s theorem.

Proof of Proposition 5. Consider the functions (ng)r>o and (0r)r>o defined by

nr(0) = RVn(Ro)
Vo € SV S Or(0) = RN-1(46)(Ro)
vr(o) = RVN"1(v(Ro) — 1).

Step 1. Computation of some derivatives of the functions nrp and Or and of their limits at
nfinity.

We first compute some explicit expressions of some derivatives of ng and fr and of their
limits when R — +oo. It will be fruitful to prove the uniformity of the convergence and to
deduce Proposition 6. By Proposition 4, we first get for every o € SN 1,



Then, by definition, we have for every j € {1,..., N} and for every function f € C*(SVN~1),

N-1 f( Z—Hz]: ) - f(U)
" f(o) = lim —T0

Therefore, considering a function f € C'(RY) and denoting for every R > 0 and o € SV,

fr(o) = f(Ro),
we compute

N
05" fr(0) = R(0;f(Ro) — 0; > 0i0;f (Ror)).

=1

Likewise, we find for every k € {1,..., N} and o € S¥—1,
N—-1
OJS o =0 — 0j0%.
Thus, it follows from formula (73) that

- N
&5 k(o) = RNYOm(Ro) — 0y Y- odkn(Ro)),
k=1

" nlo) = R (@3(40)(Ro) — 0, - 0101 (00) (o)

By Proposition 4, it gives
S J y k
6]' nr(o) = —  molo) — 0j E Uknoo(a)v
R—droo k=1

B 0r(0) —  0h(o) —o; %J;ﬂk (o).
! R—too =R

(74)

Moreover, the functions n and 8 satisfy all the assumptions of Lemma 10 with M = N + 1,

respectively M = N, and Ao, = 0. Therefore, Lemma 10 leads to

N
Z Uknlgo(g) = _Nnoo(g))
k=1

N
22 005, (0) = —(N = 1) (0),
k=1

and finally,
N-1 1
% nr(o) | = (0) + Noji(0),
95" 0p(0) R 0% (o) + (N = 1)0j000(0).

Likewise, formulae (73) and (74) yield for every (j,k) € {1,..., N}?,

N
('9,§N_1 (@SN_IHR)(U) =RN+1 (8]2~7k¢9(R0) — Z o} (crka]z’lG(Ra) + aja,gﬁ(Ra) — 0%0;
=1
N

N
> amﬁme(RaD) - RNy (((5]',]4 —ojox)or+ (Oks — UkGl)Uj)
m=1

— =1
0,0(Ro),
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so, by Proposition 4,

N N
o0 0R)0) | = (o) - ; o1 (o102 (o) + 0,05 (0) = o0 Zl o
= m:

G&m(a)) - i ((5j7k —ojog)o; + (6 — Ukol)aj)ﬁloo(cr).

However, the function 0;0 also satisfies the assumptions of Lemma 10 with M = N + 1 and
Ax = 0. Thus, we obtain likewise

N
S 88 (0) = — N6 (o), (79)
=1

and

o0 0R)(0) | = 08 (0) + Nowbo(o) + (N = 1)ay0(0) + (N = 160

f (80)

+ (N —2)oj01)0(0).
Step 2. Uniformity of the convergence.
Now, assume by contradiction that (ng)r>o does not converge to 7, in C1(S¥~1). Then,

there is some real number ¢ > 0, and a sequence of positive real number (R),),cn tending to
400, such that

N—-1 N-1
Vn €N, nr, = Neollpee@ev—1) + IV R, = V5 Mol poo(gn-1) > €.

However, on one hand, by Proposition 2 and equation (75), there is some real number A such
that

7R, || Loo(sn-1) < A
Vn € N, NC
{ IV g, [l oo (en—1) < ARNHYV(Ray.) || oo en-1y < A.

On the other hand, formulae (73), (74) and (75), Proposition 2 and Theorem 6 yield that
N-1
17 g, | oo g1y < ARY V(R oo (@v-1) + B 21 d% (R )|l poo(sn-1)) < A

Therefore, by Ascoli-Arzela’s theorem, up to a subsequence, (ng, Jneny converges in the space
C1(SN~1). By Proposition 4, its limit is necessarily equal to 7., which yields a contradiction.
Thus, (nr)r>0 converges to 7 in C1(SN¥=1). In particular, 7. is of class C' on S¥=! and
satisfies by equations (77) for every j € {1,..., N},

SNfl

9, (o) = Ugo(g) + Nojneo(0). (81)

Likewise, by Proposition 2, Theorem 6 and equations (75) and (78), there is some real number
A such that

||9R|1|VL:>10(§N71) S A7
19" 0l e -1y < AR [V (WO)(R.) e vy < A,
[d*5™ " ORl| poo(sn-1y < ARN([[V(10)(R.)[| oo sn-1) + RIId*(¥0)(R.)|| oo v 1)) < A.

Formulae (73), (74) and (78) then give

Hd?),SNflgRHLOO(SN—l) < AR ||V (48)(R.)| oo v -1 + RN +Y|d2(400) (R.)]| oo sn1)
+ RN+2Hd3(¢9)(R.)HLoo(SN,l)),
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so, by Proposition 2 and Theorem 6,
N-—-1
Hdg’g 9R||Loo(SN_1) < A.

Thus, up to the argument by contradiction above, the functions (6r)r>o converge to 0 in
C%(SN—1). In particular, 0 is in C?(SV~1) and satisfies by equations (77) and (80) for every
(j.k) € {1,...,N}?,

gN—l

9] bo(o) = % (o) + (N — 1)ojbs(0), (82)
and
O (0 020)(0) = 025(0) + Noublo(0) + (N = o0 (@) + (N = DO g
+ (N —2)0505)00(0).
Finally, we consider the uniform convergence of the function vgr. By definition, we have for every
o €SN and R > 3Ry,
vr(o) = RN"L(/T= n(Ro)e?) — 1),

so, by Proposition 2 and the proof of the uniform convergences of nz and 6 just above,
HUR — ’L.eooHLoo(SN—l)
<SRVTHWT = n(R.) = 1 ooty + 1BV () — 1) — i | poo (o)
1 1
gA(RnnRuLoo(sw y + e lORllse @i + 1R - oo”Lw<SN1>>

— 0.
R—+o00

Likewise, we compute for every j € {1,..., N} by equation (73),

85" op(o) = RN (imaﬁ(m) __Omifo) ZN: < —6‘“” fio)
j 2\/1-n(Ro) & n(Ro)

+iy/1— n(Ra)akQ(RJ)) ) V(o)

2R\/1—

Therefore, by Proposition 2 and the proof of the convergences in C'(SN=1) of np and Op just
above,

105

L a5 .
= (i\/ln(Ra)ajsN Or(o) 77R(0’) ) e10(Ro)

SNl SNI SNl

L eN-1
or =05 ool ety SA(I65" 0 — 05" Ouc | o1y + 1 (v/T = (R

i N—1 1 N—-1
B — 105 foo| pooen—1) + EHQS 77R||L°°(SN*1)>

N-1 _QN-1 1
<A(105" b — 10 eoonmSN-1)+R—N\|77R|\MSN-1)

1 SNI

0l @y + 108 anle o)

— 0.
R—+o00

Thus, denoting vee = oo, Vs is a smooth function on SV—1, which satisfies

H’UR - Uoo”cl(SN—l) R—j—oo 0.

This concludes the proof of Proposition 5. 0
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2.5 Partial differential equations satisfied by 7., 0., and v,

Finally, we deduce from the proof of Proposition 5 just above the partial differential equations
satisfied by 7eo and O.

Proof of Proposition 6. Let ¢ € S¥~1. On one hand, we compute from equation (2) on a
neighbourhood of infinity

An + 2|Vv|? + 2010 — 2 — 2end10 + 21 = 0,
so, for every R > 0,
RY(An(Ro) + 2|Vo(Ro)|? — 2¢010(Ro) — 2n(Ro) + 2en(Ro)d10(Ro) 4 2n(Ro)?) = 0.
Taking the limit R — 400, it gives by Propositions 2 and 4, and Theorem 6,
oo (0) = g (0),

which reduces to equation (34) by equation (82).
On the other hand, equation (18) yields on a neighbourhood of infinity

RNTH(A0(Ro) — Sown(Re) — Vi(Ro).V(Ro) — nA0(Re)) = 0.

Therefore, Propositions 2 and 4, and Theorem 6 yield once again at the limit R — +o00

N

> 0% () = Snb(o),

j=1
which gives by equation (81),

> 0% (0) = 5@ (o) = Nowne (o).

7j=1
However, by equations (82) and (83),
N N N
D0 0) =D (0] bx)(o) = (2N = 1) Y038 (o)
=1 j=1 j=1
N
—(N=1)) (1+ (N =2)07)0s(0)

Jj=1

N
= A" 00(0) = (2N = 1) D" 036%,(0) = (N = 12N = 2)fc(0)-
j=1

Then, equation (76) states
N
Y 0i8(0) = —(N — 1) (0),
j=1

S0,

Z 079 (o) = AS" 00 (0) + (N — 1)0s0 (o).

J=1

49



Thus, we finally find equation (35)
_ ¢
T2

Now, it only remains to prove that the functions 6, and 7. are smooth on SV=!. Indeed,
equations (34) and (35) give

A5 0 (0) + (N = D)o (0) = (85" 0ec(0) — Norioo(0)).

2 2 2
ASN‘leoo—%a?V‘l(afN‘l9oo)+c2(N—1)01(9?”‘1eoo+(N—1)(1+%—(N+1)%a%)eoo = 0. (84)

Thus, 6 is solution on SV~ of an elliptic partial differential system with smooth coefficients.
By standard elliptic theory, it is of class C* on SV ~!. By equation (34), 7 is also smooth on
SN_I. O

We conclude the second part by the proof of Theorem 1, which follows from Proposition 5
and equation (84).

Proof of Theorem 1. By Proposition 5, there exists a smooth function v, = s on SV¥~1 such
that
2N (v(z) — 1) — ivee (x) — 0 uniformly.
‘LL‘| |x|—+o0
Moreover, by equation (84), v, satisfies the linear partial differential equation (10). O

3 Asymptotics in dimension two and in the axisymmetric case

In the last part, we focus on the axisymmetric case and on the case of dimension two. In
both cases, the system of equations (34) and (35) reduces to an entirely integrable system of
linear ordinary differential equations of second order. In Proposition 7, we compute explicitly
its solutions up to undetermined constants a and §. Lemma 6 in connection with the Pohozaev
identities of Lemma 7 links the value of v and § with the energy E(v) and the momentum P(v),
which completes the proof of Theorems 2 and 3. Finally, we deduce Corollary 1 from Lemma 7.

3.1 Explicit expression for the first order term

This section is devoted to the integration of the system of equations (34) and (35) in dimension
two and in the axisymmetric case. It relies on the use of spherical coordinates. That is the
reason why we first recall some of their properties.

Indeed, let & : Q =Ry x [0, 7]V 2 x [0, 27] — RY, the function defined by

N-1
(1, Py, Bn-1) = (rcos(B1),rsin(B1) cos(Fa), . . .,rille sin(f3;)).
The function ®y is smooth on {2 and its Jacobian matrix is

J(@n)(r, b1, ..., Bn-1) = (Jij)1<ij<n,
where
g1
Jij = klel sin(B) cos(5;),
Jij=0,ifi>2and j<i—2,
i—1

i1 = —r 1 si ,

Jii-1 rk:l sin ()

j—1
Jij = Tkljl sin(f) cos(B;) cos(Bi—1), otherwise.
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Thus, J(® ) is invertible if and only if r # 0 and 8; # 0 modulo = for every j € {1,..., N —2}.
Moreover, its inverse is

J(@N) ", B, Bn-1) = (] i<ijen,

where -
i
Jijll = kT:II sin (k) cos(5;),
Jijjl:(), if j>2andi<j—2,
gL — _ sin(Gi-1)
1=~ ,
T sin(s)
T sin(B)
J;jl = 2= cos(fBj_1) cos(f3;), otherwise.
’ rkl;ll sin(Bk)

Therefore, if we consider a smooth function f € C°°(R™) and denote

g=fo®n,
the chain rule theorem yields
d1f(®n(y)) 9rg(y)
vy € Q,J(2n)(y) : = :
ONf(Pn(y)) Ipn_19(y)

Moreover, assuming f is axisymmetric around axis x; or the dimension N is two, the function
g is independent on the variables (32, ... and [y, which yields for every j € {2,..., N},

oy F(@n () = con(B)0r9() — 2 000,
0, F(@n(y)) = 1L sin() cos(3)ana(y) + VIV (5405, 010,
0% 1f (@ (y)) = cos®(B1)8}9(y) + 281n(ﬂ22cos(61)8519(y) - 2Sin(ﬂlzcos(ﬁl) 875,9(9)
+ Sini(ﬁl)arg(y) + Smj(fl)ﬁﬁl,glg(y),
9, (Bx(y)) = L sin(B)” cos®(3) (sin2(50)07, gfy) + P o)
- QSin(&:;OS(ﬁl)aﬂlg(y) + wsiﬂ(ﬁl)arg(y) + Cosigﬁl)aél,glg(y)
- %&g(y) - maﬁlg(y» + %&«g(y) + maﬂlg(y),

Af(@n(y) = 07,.9(y) + %&gz(y) + ;12(3§1,ﬁ19(y) + (N — 2)cotan(31)0s,9(y)),

provided that 7 # 0 and sin(31) # 0. Finally, consider now a smooth function f € C*°(SV~1)
and denote

g(ﬁla" . 7/6]\7—1) = f(q)N(laﬁla '7/6]\[—1))'

Assuming f is axisymmetric around axis 1 or the dimension NN is two, we deduce that for every
y=(1,01,...,6n-1) such that sin(f;) # 0,

& f(@n(y)) = —sin(B1)ds,9(y)
025" F(Bn(y)) = sin(81)03, 5,9(y) + 2sin(B1) cos(51)Ds, 9(y) (85)
Agv-1 f(Pn(y) = 93, 8,9(y) + (N — 2)cotan(B1)8p, 9(y)-
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Proposition 7 is then a consequence of formulae (85), and equations (34) and (35).

Proof of Proposition 7. In this proof, the dimension N is assumed to be two, or the travelling
wave v is supposed to be axisymmetric around axis x;. Thus, the functions 7., and 6., only
depend on the variable 31 in spherical coordinates. Up to a misuse of notations, we will consider
them as functions of (3.

However, by Proposition 6, 6 is smooth on SV ~! and satisfies equation (84). Therefore, in
the new variables, it is smooth on [0, 7] in dimension N > 3, respectively [0, 27] in dimension two.
Moreover, by equation (84) and formulae (85), it verifies the second order ordinary differential
equation

2
(1— % sin®(51))0% (B1) + (N — 2)cotan(B1) — N¢? cos(B1) sin(81))04(B1) + (N — 1)
2 2

1+ % (N + 1)% cos?(81))0s0(B1) = 0.

(86)

The articles of C.A. Jones, S.J. Putterman and P.H. Roberts [13, 12] yield one particular solution
of equation (86) in dimensions two and three. Generalising its form to every dimension, we find
a first solution equal to

cos (1)
(1— 5 sin®(B1))

However, the set of solutions on ]0,7[ in dimension N > 3, respectively |0, [ and |m, 27| in
dimension two, is a vectorial space of dimension two. In order to find another independent
solution, we let

Hoo(ﬂl)

u(fr) = Soh(3))

for every 31 €]0,7[\{%} in dimension N > 3, respectively 8, €]0,7[\{5}U]m,2x[\{3F} in di-
mension two. Then, we compute the next ordinary differential equation for the function w:

Soli(61) =

N -
2

2

sin(/1) cos(51)(1 — % sinz(ﬂl))u"(ﬂl) +(N—-2- NsinQ(ﬁl) +c? sin4(ﬁl))u’(61) =0.

After a first integration, we deduce that there is some real constant A such that
(1 5 sin(B) "=

2 . N72 )
cos?(f1) sin” ~ (/1)

and, after another integration, we infer that there is another real constant B such that

u'(f1) = A

pz_i 1 e 2\ 2(k—p)+3
up)=B+AY ——1Cj (1 - ) tan®\" )3 ()
— 2(k—p)+3 2

if N =2p,and if N =2p+1,

u(p1) =B + A<1 - C;)pl <\/1 + <1 - c;) tan?(51) + i Sﬁ

=1 Ok

<ln ( \/@tan(ﬂl) > - ’“i g1 \/1 +(1- f)tan2(51)>>7

/14 (1 - 9) tan?(5) 20 (1- )7 tan’(5)

g=1
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where

(=) 1 ((k = 1)H?

Vk € N* =

ST TRk - )

Thus, we find another particular solution equal to
Sin(ﬂl)
Sola(B1) = —7 5
1-— % sm?(ﬂl)
if N =2,
-1 k+p—3
cos(f1) L 1 K < 62> 2 o
Sol = Col1——= tan2(k—p)+3
2(f1) (1- Zsin2(p))p =20k —p)+3 P17 2 (B)

if N=2pandp>1,andif N =2p+1,

-1 P ik
Solz(f1) = COS(ﬁl) g <1 a 622>p <\/1 T <1 - C:) tan® (1) + Z (GJZ
k=1

(1-— 2 sin?(1)) "2

< ( Ftan(ﬂl) > kz:laQH \/1 tan2(61)>>.
(B1)

1+ \/1 — % tan 2q (1- 2 )qtanzq(ﬁl)

In particular, we remark that

qg=1

1- )i
Soly(31) P (:())_2))21)37

if N=2pandp>1,
Solz(61) ~ In(B)
B1—0

if N=3,and if N =2p+ 1 withp > 1,

1

SR (o oy

Thus, every solution v of equation (86) writes as

v(B1) = ASoli(B1) + BSola(51)

on 0, 7[\{Z} in dimension N > 3, respectively |0,7[\{3} and |r, 27[\{3F} in dimension two.

Actually, 6 is a smooth, bounded solution of equation (86). By assertions (87), (88) and
(89), the functions Soly are not bounded at the point 8; = 0 in dimension N > 3, so, there is

some real constant « such that

acos(f1)
(1— < sin?(61))

0o (1) = aSol1(61) =

ﬂ?
2

which yields formula (37) in the axisymmetric case. On the other hand, in dimension two, both
solutions Sol; and Soly are smooth and bounded on S'. Therefore, there are some real constants

« and ( such that

008(61)

sin
C Cos(ﬂl) 43 (B1)
— 2 4 ceosthr)” 1

c2 cos(1)2’

Oo(0) :a =
-3t 2
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which is formula (39). Moreover, in dimension two, the axisymmetric travelling waves are even
functions of (1. Thus, if the travelling wave v is axisymmetric, the function 6., is an even
function of 1, which means that the constant § vanishes and which leads to equation (37) in
dimension two.

Now, equation (34) yields in spherical coordinates, up to a new misuse of notations,

Moo (B1) = —c(sin(B1)05 (1) + (N — 1) cos(B1)0s0(51))-
In dimension two, it gives equation (38)
1 2 cos?(31) sin(1) cos(f1)
2 ;2 o 2 2 —2fc 2 2 ’
1 —$sin®(f1) (1— Ssin (51))? (1 - % sin (£1))?

while in the axisymmetric case, it gives formula (36)

1 N cos?(f31) ) .

< (f1) = ac 2 N > N
) ((1—3sm2<ﬂ1>>2 1— Zsin?(5)5 "

This ends the proof of Proposition 7. 0

Noo(B1) = ac (

3.2 Value of the stretched dipole coefficient

Finally, we link the values of the coefficients « and 3 to the energy E(v) and the momentum P(v).
The proof essentially relies on integral equations which are summed up by Lemmas 6 and 7. In
Lemma 7, we state Pohozaev’s identities for equation (2). They follow from the multiplication
of equation (2) by the standard Pohozaev multipliers x;0;v(z) and several integrations by parts.
They were already derived in [8], so, we omit their proof here. On the other hand, Lemma 6
provides integral equations (40) and (41). In particular, equation (40) is very similar to the new
integral relation of [8]. The main difference is that the speed ¢ is now supposed to be subsonic,
whereas it was supersonic in [8].

Proof of Lemma 6.

Step 1. Proof of equation (40).

The proof relies on the multiplication of equation (2) by the standard multipliers v and iv.
Indeed, consider the function defined by

VR > 0,3(R) :/ () da.
B(O,R)

the multiplication of equation (2) by the function v gives after some integrations by parts

/ (Vo> +7?) = c/ i01v.v + ®(R) —I—/ dyv.v,
B(0,R) B(0,R) S(0,R)

which also writes for R sufficiently large

1
2 .2y _ . 1 -
/B(O,R)OVU‘ T = C/ (i01v.v + 01 (40)) + (R) /S(O,R) oum c/ 6.  (90)

B(0,R) 2

By Proposition 1, we infer

/ (Vo2 +7)  — / (Vo + ),
B(0,R) R—+too JrN
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while by definition,

/ (10vv+ 01 (¥0)) —  2p(v). (91)
B(0,R) R—+o00
However, Proposition 2 yields
ARNfl
on < ——— — 0,
/5(0,3) RN+l R otoo

while Proposition 5 gives

/ v = RN_I/ 010(Ro)do — 01000 (0)do. (92)

S(0,R) SN—1 R—+o0 Jgn-1

Thus, equation (90) leads to

*R) /R (Vo + ) — 20p(0) 4 /S  0ulo)do (93)

On the other hand, we can also multiply equation (2) by the function iv to find
%am + div(iVv.v) = 0. (94)

Now, we multiply this equation by the function x; and integrate by parts to obtain

ECI)(R) +/ 101w = / (CRV%’I’] + Rl/ﬂ'@,ﬂ}.i}),
2 B(0,R) S(0,R) \2

which also writes for R sufficiently large

E<I>(R) = —/ (01(¢0) + i01v.v) + / <CRV1277 + Rvyid,v.o + 1/1<9>. (95)
2 B(0,R) S(,r) \2
By Proposition 5, we get
/ Rvin = RN/ oin(Ro)do — 02100 (0)do.
S(0,R) SN-1 R—+o00 JgN-1

We then compute

N
/ Ruid, v = —/ Rypo&,Q = / Ruvino, 0 — / Ry Z v OL0.
S(0,R) S(0,R) S(0,R) S(0,R) =1

However, on one hand, Proposition 2 gives

/ RI/1778V9
S(0,R)

On the other hand, by Propositions 2 and 4, equation (76) and the dominated convergence
theorem, we compute

N N N
/ Ry Z VOl = / RNoy Z 0,0k0(Ro)do — o1 Z 00" (0)do
S(0,R) el SNt k=1

1 R—+o00 JgN-1

N

< — —
~ R?N Bt

=—(N-1) /SN—l 01000 (0)do.
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Thus, it follows from equations (91), (92) and (95) that

4 2N
B(R) = —op0)+ [ oo+ 22 [ (o)

By equation (93) and by uniqueness of the limit of the function ® in +oo, we finally find

/ (|Vo]? + %) — 2ep(v) + c/ 0100 (0)do = —%p(v) + / (02100 (o) + g01¢9oo(or))al0',
RN c SN-1 c

gN-1
which yields immediately equation (40).
Step 2. Proof of equation (41)

The proof relies once more on equation (94) just above. Here, we multiply it by the function
xj for any j € {2,..., N} and integrate by parts on the ball B(0, R) to obtain

/ 10v.0 = / (cRulujn + Rl/ﬂ'&,@.@),
B(O,R) S(0,R) \2

which also writes for R sufficiently large

/ (0;(¥8) + i0jv.v) = / (cRujym + Rvjid,v.v + Vj6>. (96)
B(O,R) S(0,R) \2
By Proposition 5,
/ Rvivjn = RN/ oiojn(Ro)do  — 01010 (0)do,

S(0,R) SN-1 R—+o0 JgN-1

and,
/ v = RN / oj0(Ro)doc — 000 (0)do.
S(0,R) SN-1 R—+oco JgN-1

Likewise, we compute

N
/ Rvjid,v.v = —/ Ruij&,Q = / Rvjno,0 — Ry; Zl//.ﬁk&
S(0,R) S(0,R) S(0,R) S(0,R) 1

However, on one hand, Proposition 2 gives

/ Rvino,0
S(0,R)

On the other hand, by Propositions 2 and 4, equation (76) and the dominated convergence
theorem, we get

A N
cART
~ R?N Rtoo

N N N
. 6 = N _ . 0 d A Gk d
/S(O’R) Ry kzl’/kak SN_IR oj ;Ukak (Ro) o T SN—IU];U]C v (o)do

=—(N - 1)/ 0j0s0(0)do.
SN-1
Thus, it follows from the definition of the momentum and from equation (96) that

2P;(v) = = /SNl 010N (0)do + N 00 (0)do,

§N-1

which is equation (41). O

o6



Now, we state the proof of Theorem 2.

Proof of Theorem 2. By Proposition 7, we already know

Vo € SV v (0) = Ose(0) = a1

202\ N °
)2

2
(_%"‘2

Thus, it only remains to deduce the value of the stretched dipole coefficient o from formula (40).
Indeed, by Proposition 7, formula (40) writes

9 IN o?
/RN(|VU| ) = 2e\ 1= g Jplv) =acl {73 sVl (1— 2 4 So0)% T o

2 2
o? Not
< c2 : CZO'% N - c2 0]2-0'2 ﬁ-}—l dU :
1-S+=H2 (1-5+=1)°
Denoting
2
Ti= [ (V6P ) = 21 = Syp(o),
RN c
and ) \
2N
Jy = — 20122Nd0—Nc/ 20122N do,
c JsN-1 (1_%+0201)7 SN-1 (1_%+c201)5+1
it also writes
J1 = ads. (97)
Now, we express J; in function of the energy E(v) and the momentum p(v). Indeed, Lemma 7
yields
[ owf = £,
RN
and

[ 9L0P = (V= (B - enlw)),

where V | v is defined by
VJ_'U = (62v, ey 8]\/1)).

However, by definition,
1 1 1
E(w) = 2/ |01v|* + / |V 0]? + / n?,
RN 2 RN 4 RN

/RN 7 =2(N — 1)ep(v) — 2(N — 2)E(v).

S0,

Thus, we conclude that
4
Ji=4—-N)E(w)+ ((N—=3)c+ E)p(v). (98)

On the other hand, we can explicitly compute the value of .Jo in function of ¢ and N. Indeed,

2N 2 2
J2:< _C)/ A do. (99)
c 2 SN-1 (1_§+C§1)7+1

we have
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Therefore, we are reduced to estimate the integral defined by

ot

I(N,c) = do. 100
(N.¢) éNl(L_§+¢gqg+1“ (100)

In dimension two, we use the polar coordinates to compute such an integral:

LT [T e
“M@‘A a—ﬁmﬂmvw_fé a+u—£WV

\/7/ 1+u2

Vi-g
where we made the successive changes of variables ¢t = tan(3) and u = — %t.

In dimension N > 3, we use the spherical coordinates:

SlnN 2
I(N,c)=[sN~ 2|/ ( ﬁ))ffjldﬁ. (101)
— 7 Sln 2

At this stage, the computations are different according to the parity of the dimension N. As-
suming first that N = 2p + 2 is even, we find

22p+17rpp!

S| = 0,
S71= ")

and

™ 2 s N=2
[ cost () s 2(9)
0 (

“+o00 t2p
N = 2/ = dt
1-5 51n2(ﬂ))7+1 0 (I+(1- 7)t2)2+p

9 +oo u2p J
_u—ﬁwéA (w2
9 +0 L 2p
= 1/ th(s) ds,
( _%)p-ﬁ-g o ch(s)3

where we made the changes of variables t = tan(3), u = /1 — %t and u = sh(s). Then, consider

—+o00 th(8)2p
VpeN, I, = d
PES A ch(s)

An integration by parts gives

I

»— 1

p

/+OO th(s)* Ipy1
+1 = ds = .
ch(s)3 2p+1

Since Iy = 7, the value of I, is

_ (2p)ln
P g2pr1(ph)2”

o8



and finally,

/+°° th(s)?? . Q2+ )
o ch(s)d 22T ((p+1)N2(2p + 1)
Thus, equation (101) writes
I(2p+2,c) = . 102
In particular, formula (102) remains valid when p = 0.
On the other hand, assuming that N = 2p + 3 is odd, we compute
s+ = o+l
pl
and
™ 2 . N—2 1 2 2
1 — u2)P
/ cos (?)sm g\,ﬂ) dﬁ—?/ u2( u”) _du
0 (1-Gsin®(8)z" 0 (14 S(u?-1))rz
B 42 /m v2(2(1 4 v?) — 2v2)Pdv
2P +3(1 — %)pﬂ 0 (1+ U2)p+g
4v/2 vz
= V2 y /ﬁ(c2 — 2w*)Pwidw
2+3(1 — €L o
9 Ly
= 27 (sin®tL(9) — sin®F3(9))de,
(1— <)+t o
where we successively made the changes of variables u = cos(3), v = ;ﬁcw w = \/11? and

w = % cos(#). Now, Wallis’ formulae yield

2 . B 4P (pl)?
/0 (s T(0) —sin 00 = o o T3y

which gives
220+ (pl)?

(1= P2+ Dl(2p+3)’

p . N—
/‘cw%man "B 45
0

1— < sin?()) !
and finally, by equation (101),
(4m)P*p!
(1) 2p+1)12p +3)

In conclusion, if N = 2p + 2, we have by equations (97), (98), (99), (100) and (102),

o= W <(1 —p)cE(v) + (2 + 21’2_18);9(12)) ;

I(2p+3,c) =

(103)

and if N = 2p + 3, by equations (97), (98), (99), (100) and (103),

(1-9)P(2p+1)!

a= () ip] <1 _22ch(1)) +(2 +p02)p(v)> .

It yields immediately equation (12) by using the definition of the function I', and completes the
proof of Theorem 2. O
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By the same arguments as in the proof of Theorem 2, we complete the proof of Theorem 3.

Proof of Theorem 3. By Proposition 7, we already know that

01 02

Vo € SY 000(0) = Ouo(0) = @

+ 0
2 202 2
1-g+51 1-¢

Thus, it only remains to deduce the values of the coefficients o and 3 from equations (40) and
(41). Indeed, by Proposition 7, formula (40) writes in dimension two

2 4 o? ol
R2 St 1 _ % _|_ 1 St 1 _ % _|_ 1

2 2

Actually, we remark that we recover formula (97) in dimension two. Therefore, the value of «
is exactly the same as in the proof of Theorem 2, i.e.

2 2 2
2 §11_C;2 Sl(l_c202)2

Denoting

we compute

2 z .2
gh:<2—8)/?”zdo=4@—c%/”sf(?ﬁ
st (1 _ ¢ ‘72)2 0 (1 _¢ 51;1 (t))2

F/ 1+u2

’U

/Jroo Sh2
/1 ch3 (v)

where we successively made the changes of variables u = /1 — % tan(t) and u = sh(v). Then,
the computation of J3 yields by equation (104)

which concludes the proof of Theorem 3. O

Finally, we conclude the paper by the proof of Corollary 1, which is an immediate consequence
of Theorem 2 and Lemma 7.
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Proof of Corollary 1. By equations (97), (99), (100), (102) and (103), there is some real number
A. N > 0 such that

4
o= Aoy (/ (Vo2 + 7?) — 2ep(v) + CQp(U)> — Auni. (105)
RN
However, Lemma 7 gives on one hand

E(v) = /RN 102,

On the other hand, by definition,

1 1 1
E(v):Q/RN‘alv‘Q-i-2/RN‘VJ_U|2+4/RNT]2,

1
E(v):/ |VLU|2—|—/ n.
RN 2 JrN

B = 2B) = o) + o) + 5 [P (106)

S0,
Thus, we compute

Moreover, Lemma 7 once more yields

1
B(o) =) = 5 [ IV2oP =0

and likewise,

1 N -2 1
= B(v) — —— 2 N =2 SN RO
ep(v) (v) N—1/RNW”’ N_l/RN]VJ_U\ +2/RN77 >0

Therefore, J; is the sum of three non negative terms.

Now assume that « is equal to 0. A,y being strictly positive, J; is equal to 0. By formula
(106), it follows that

B(w) = a(e) = p(v) = [ o =0,

so the energy E(v) vanishes, and the travelling wave v is a complex constant of modulus one.

Reciprocally, if v is constant, the energy F(v) and the momentum p(v) vanish and « is equal
to 0 by equation (105), which ends the proof of Corollary 1. O

Remark 15. By the proof of Corollary 1, the stretched dipole coefficient « is always non
negative.
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