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Abstract

We provide a variational construction of special solutions to the generalized surface quasi-

geostrophic equations. These solutions take the form of N vortex patches with N -fold symme-

try, which are steady in a uniformly rotating frame. Moreover, we investigate their asymptotic

properties when the size of the corresponding patches vanishes. In this limit, we prove these

solutions to be a desingularization of N Dirac masses with the same intensity, located on the

N vertices of a regular polygon rotating at a constant angular velocity.

1 Introduction

In this paper, we consider the generalized surface quasi-geostrophic equation{
∂tϑ+ v · ∇ϑ = 0,

v = ∇⊥∆−sϑ,
(gSQG)

for ϑ : R2 × R → R, where 0 < s < 1 is a �xed parameter. We use here the notation ∆−s as a
shortcut for −(−∆)−s.

The surface quasi-geostrophic equation corresponds to the case s = 1
2 , it is used as a model

in the context of geophysical �uid mechanics with ϑ being the potential temperature in a rapidly
rotating strati�ed �uid with uniform potential vorticity and subject to Brunt-Väisälä oscillations
(see [13] and the references therein).

Formally at least, the family of nonlinear transport equations (gSQG) interpolates between
the stationary equation ∂tϑ = 0 when s → 0, and the two-dimensional Euler equation for incom-
pressible �uids in the limit s→ 1. In that last case, the vector �eld v is the �ow velocity and the
function ϑ is the �ow vorticity, usually written as ω in that context.

From a mathematical point of view, the surface quasi-geostrophic equation has attracted in-
terest in particular because, while being two dimensional and therefore simpler to analyze, it
possesses some scaling analogy with the three-dimensional Euler equation (see [7] and the ref-
erences therein). Local well-posedness of classical solutions was established in [7], but solutions
with arbitrary Sobolev growth were constructed in [15] (in a periodic setting). To our knowledge,
establishing global well-posedness of classical solutions, or alternatively describing their �nite time
singularities, remains an open problem. Note also that the global existence of weak solutions
in L2(R2) was shown in [19], but their non-uniqueness below a certain regularity threshold was
highlighted in [4].

As for the two-dimensional Euler equation, all the radially symmetric functions ϑ are stationary
solutions to (gSQG). Exhibiting other global smooth solutions seems a challenging issue. A �rst
example was recently provided in [6] by developing a bifurcation argument from a speci�c radially
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symmetric function. The variational construction of an alternative example in the form of a smooth
traveling-wave solution was completed in [11, 9]. These latter results are the starting point of the
following analysis.

It is well-known that the two-dimensional Euler equation exhibits point vortex solutions (see [17]
and the references therein), which take the form

ϑ(x, t) =

N∑
n=1

anδx=xn(t).

In this formula, the notation ϑ stands for the vorticity of the ideal �uid under consideration, and
an and xn(t) denote the intensity and the position at time t of the n-th vortex. When the number
N of vortices is equal to 2, two special con�gurations are of interest. The �rst one corresponds to
the case a1 + a2 = 0 for which the two vortices translate at a constant common velocity. When
a1−a2 = 0 instead, the two vortices rotate around each other at a constant angular velocity, while
their midpoint remains �xed. This latter con�guration generalizes to an arbitrary choice of the
number N ≥ 3, for which N vortices, with the same intensity and located on the N vertices of a
regular polygon, co-rotate at a constant angular velocity.

Point vortices are singular weak solutions to the Euler equation. On �nite time intervals, they
can be approximated through regularization by classical solutions (see e.g. [17]). An interesting
issue is to ask for the existence of regularized solutions which approximate the point vortices for
all time. This desingularization issue was answered positively for numerous vortex con�gurations
of the Euler equation (see e.g. [21] and the references therein). In particular, the construction of
smooth traveling-wave solutions corresponding to a vortex pair in translation was achieved in [18]
(see also [3, 5]). In parallel, less regular approximations called vortex patches were constructed
both for the vortex pair in translation [22, 23] and for the ones in rotation [24].

The notion of point vortex solutions easily extends to the context of the generalized surface
quasi-geostrophic equations. This was the starting point of the constructions in [11, 9], which
exhibited a smooth traveling-wave solution to (gSQG) corresponding to a vortex pair in translation.
In this direction, a natural question is to ask for a similar construction in the case of a vortex pair
in rotation. For 1/2 < s < 1, this question was answered positively in [14], where a pair of vortex
patches was shown to exist by a perturbative argument. In [12], solutions with N -fold symmetry
were constructed for 1/2 < s < 1 (and also for the Euler equation). They are perturbations of
one radially symmetric vortex patch and therefore are of di�erent nature than desingularized point
vortex solutions. While completing this work, smooth desingularized point vortex solutions of the
form of translating vortex pairs or co-rotating vortices were also constructed using a perturbative
method in [1]. An approximation result on �nite time intervals for arbitrary solutions of the
SQG point vortex system by weak solutions of SQG was also recently proved in [8]. In a di�erent
direction, beautiful rigidity results for uniformly-rotating solutions of the Euler and SQG equations
are described in [10].

Our main goal in this paper, in the spirit of [24] for the Euler equation, is to provide a variational
construction of families, for arbitrary 0 < s < 1, of N co-rotating vortex patches with N -fold
symmetry. Additionally, we prove these patches to be a desingularization of N point vortices in
rotation.

Before stating our main result, we �rst explicit the equation satis�ed by a solution to (gSQG),
which remains steady in a uniformly rotating frame. We introduce an angular velocity α and we
look for solutions under the form

ϑ(x, t) = Rαtω(x) := ω(R−αtx), (1)

where Rφ stands for the counterclockwise rotation of angle φ. Here, we make the choice to use
the notation ω for the pro�le of the solution in the rotating frame in reference to the vorticity
formulation of the two-dimensional Euler equation. In view of the equation for the velocity v
in (gSQG), we next set

u = −∇⊥
(
ks ? ω

)
. (2)
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In this identity, the function ks is the fundamental solution of the operator (−∆)s on R2. This
solution is explicitly given by the formula

ks(x) =
cs

|x|2(1−s) , with cs :=
Γ(1− s)
22sπΓ(s)

, (3)

it is often called the Riesz potential of order 2s, and denoted also as I2s.
Combining (1) and (2) yields

v(x, t) = Rαtu(R−αtx),

so that the �rst equation in (gSQG) reduces to

αx⊥ · ∇ω(x) +∇⊥
(
ks ? ω

)
(x) · ∇ω(x) = 0.

Hence, a solution to (gSQG), which is steady in a uniformly rotating frame, satis�es the stationary
equation

∇ω(x) · ∇⊥
(
ks ? ω(x) +

α

2
|x|2
)

= 0. (4)

A possible weak formulation for (4) is that ω satis�es∫
R2

ω(x)∇ϕ(x) · ∇⊥
(
ks ? ω(x) +

α

2
|x|2
)
dx = 0, (5)

for any function ϕ ∈ C∞c (R2). The vortex patch solutions which we will construct own a priori
no more regularity than being in the Lebesgue spaces Lp(R2) for any 1 ≤ p ≤ ∞. Since they are
also of compact support, due to standard elliptic theory for Riesz potentials the corresponding
functions ks ? ω belong to the Sobolev spaces Ẇ 2s,p(R2) for any 1 < p < ∞. For s < 1/2, this
regularity is not yet su�cient to provide a rigorous meaning to the weak formulation in (5). For
that reason, we will rely on a di�erent and restricted notion of weak solutions. More precisely, in
view of (4) we shall say that if ω ∈ L1(R2) has compact support and satis�es

ω = f(ks ? ω +
α

2
|x|2),

for some Borel measurable function f : R → R, then it is a weak solution of (4). We will be
particularly interested in the case where f is a step function, and in such cases we will show that
these weak solutions are also weak solutions in the sense of (5) when s ≥ 1

2 .

A vortex patch ω writes as
ω = λ1Ω.

In that identity, the notation 1Ω refers to the characteristic function of the support Ω of the patch.
The positive number λ is its intensity. Since we aim at desingularizing N point vortices with equal
intensity, it is natural to impose that the N patches own the same intensity λ. Since the point
vortices are located on the N vertices of a regular polygon, we also impose the symmetry condition

ω = R 2π
N
ω. (6)

In the sequel, this symmetry property is used in order to restrict the construction to only one
vortex patch inside the angular sector

SN :=
{(
r cos(θ), r sin(θ)

)
∈ R2 : − π

N
< θ <

π

N

}
. (7)

Moreover, we also impose the vortex patch to be angular Steiner symmetric with respect to the
angle θ = 0. Recall that this condition is de�ned as

ω(r, θ) = ω](r, θ), (8)

where the notation (r, θ), with r > 0 and −π/N < θ < π/N , stands for the usual polar coordinates.
In this de�nition, the angular Steiner symmetrization ω] of the function ω for the variable θ is the
unique even function such that

ω](r, θ) > ν if and only if |θ| < 1

2
meas

{
θ′ ∈

(
− π

2
,
π

2

)
: ω(r, θ′) > ν

}
,
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for any positive numbers r and ν, and any −π/N < θ < π/N . It turns out that the symmetry
condition (8) provides a number of simpli�cations in our variational construction of N vortex
patches (see Appendix A for some useful properties of the angular Steiner symmetrization). In the
sequel, we denote by Lpsym(R2) the subset of functions in Lp(R2), which satisfy both (6) and (8).

We are now in position to state our main result.

Theorem 1. Let 0 < s < 1 be given, and let λ > 0 be su�ciently large, depending only on s. There
exist an angular velocity αλ and a function ωλ ∈ L∞sym(R2), which satisfy the following properties.

(i) The vorticity ωλ is a co-rotating vortex patch solution to (gSQG) with intensity λ, in the sense
that there exists µλ ∈ R such that

ωλ = λ1{ψλ>0}, (9)

with

ψλ(x) :=
Γ(1− s)
22sπΓ(s)

∫
R2

ωλ(x′)

|x− x′|2(1−s) dx
′ +

αλ
2
|x|2 − µλ. (10)

(ii) If 1/2 ≤ s < 1, then ωλ is also a weak solution to (4) in the sense of (5), where α ≡ αλ.
(iii) Let Ωλ := {ψλ > 0} be the support of ωλ. There exists a positive number C, independent of
λ, such that

Ωλ ∩SN ⊆ B
(

(1, 0),
C√
λ

)
.

In particular, the support Ωλ has at least N connected components when λ is su�ciently large.

(iv) In the limit λ→∞,

ωλ →
N−1∑
n=0

δR 2nπ
N

(1,0), (11)

weakly in the sense of measures, and if 1
2 ≤ s < 1 then the angular speeds satisfy

αλ →
N−1∑
n=1

cs(1− s)∣∣(1, 0)−R 2nπ
N

(1, 0)
∣∣2(1−s) . (12)

(v) Concerning µλ, we have the asymptotic bounds

0 < lim inf
λ→+∞

µλ
λ1−s ≤ lim sup

λ→+∞

µλ
λ1−s < +∞. (13)

In common terms, ωλ is therefore a desingularized solution of the (gSQG) equation with N
patches rotating at a constant angular velocity αλ.

Note that taking the limit s → 1− of the expression on the right-hand-side of (12) in the
particular case N = 2, yields the constant 1

4π . That does correspond exactly to the speed of
rotation of a pair of point vortices on the unit circle evolving according to the Euler equations.

We mention that in the case of the Euler equations the divergence speed of the parameter µλ
with respect to λ is logarithmic (see [24]). In that case the full limit is known to exist for the
quotient in (13).

We also do not know whether the support of each patch of ωλ is convex or connected, even for
λ large. For values of s smaller than one half this seems particularly challenging, since the weak
formulation (5) a priori makes no sense.

In the next section we present the outline of the proof of Theorem 1. More precisely, we will
describe the variational strategy which is followed, involving penalized regularized problems, and
describe the various uniform and localization estimates which eventually allow us to pass to the
limit and complete the proof of Theorem 1. The intermediate steps are all stated within that
section, but the proofs are postponed to Section 3. Finally, Appendix A contains a number of
properties relating the Steiner symmetrization and functionals which appear at some point in our
analysis.
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2 Outline of the proof of Theorem 1

In this section we describe in detail our strategy to prove Theorem 1, and we state all the inter-
mediate results. The proofs of the later are postponed to Section 3.

2.1 Construction of the co-rotating vortex patches

The Hamiltonian nature of the Euler equations (see e.g. Arnold [2]) has long been a fruitful source
for the construction of steady solutions. We follow a similar strategy in the context of the (gSQG)
equation, and for that purpose we consider the energy of the �uid

Es(ω) :=
1

2

∫
R2

∫
R2

ks(x− x′)ω(x)ω(x′) dx dx′, (14)

and its impulse

L(ω) :=

∫
R2

|x|2ω(x) dx. (15)

Both quantities are conserved for smooth solutions of equation (gSQG), and at least formally
equation (4) arises as the Euler-Lagrange equation associated to these two functionals for some
Lagrange multiplier α.

Similar to the Euler equation, equation (gSQG) is also a transport equation. In particular,
any functional or constraint which is invariant by rearrangement is formally preserved by the �ow.
This applies to the total circulation of the �uid

M(ω) :=

∫
R2

ω(x) dx, (16)

and also to upper and lower bounds on the scalar function ω, constraints that we use in the sequel.

2.1.1 A constrained maximization problem with compact setting

There are a number of obstacles to build a meaningful and e�ective variational problem associated
to the functionals Es, L and M.

First, the energy functional Es is unbounded under L1-type constraints such as those given by
L or M . To overcome this, for λ > 0 we consider the additional L∞-type contraints set

L∞λ (R2) :=
{
ω ∈ L∞(R2) : 0 ≤ ω ≤ λ a.e.

}
.

Next, the physical domain is in�nite and the functional spaces on which Es, L and M are
naturally de�ned are di�erent. Following Turkington [24] in his study of vortex patches for the
Euler equation, we consider the section of annulus

S :=
{

(r cos(θ), r sin(θ)) :
1

2
≤ r ≤ 2 and − π

2N
≤ θ ≤ π

2N

}
,

and further restrict our study to the function set

Xλ :=
{
ω ∈ L∞λ (R2) s.t. ω ◦R 2π

N
= ω and ω = 0 a.e. on SN \ S

}
. (17)

The symmetry assumption is natural since it re�ects the ones of the functionals, but the imposed
vanishing of ω in SN \S is evidently not a natural constraint, it makes the functional setting easier
and provides some form of compactness to the problem, but eventually we will need to show that
it is not activated. The introduction of S is motivated by the fact that, in the limit λ → ∞ and
in view of the symmetry assumption, the vortex patches which we will construct are expected to
be supported into N small balls centered at the N vertices xn = (cos(2nπ/N), sin(2nπ/N)) of a
regular polygon.

Observe that for functions ω ∈ Xλ the energy Es may be rewritten as

Es(ω) =
N

2

∫
S

∫
S

κs(r, r
′, θ − θ′)ω(r, θ)ω(r′, θ′) r′ dr′ dθ′r dr dθ, (18)
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due to the symmetry and support properties of the function ω, and where the kernel κs is equal to

κs(r, r
′, ξ) :=

N−1∑
n=0

cs(
r2 + r′2 − 2rr′ cos

(
ξ − 2nπ

N

))1−s . (19)

For further use, let us also de�ne the function

Ksω(r, θ) :=

∫
S

κs(r, r
′, θ − θ′)ω(r′, θ′) r′ dr′ dθ′.

We consider the maximization problem under constraint

Eλ := sup
{
Es(ω) : ω ∈ Xλ s.t. M(ω) = L(ω) = N

}
. (Pλ)

It is straightforward to check that the constraint set is non empty when λ is chosen large
enough. Let ε ≡ ε(λ) be the length-scale de�ned by the identity

λπε2 = 1. (20)

There exists (a unique) 1− ε ≤ rε ≤ 1 + ε such that the function $λ given by

$λ :=

N−1∑
n=0

λ1
B
(
R 2nπ

N
(rε,0),ε

), (21)

satis�es the constraints M($λ) = L($λ) = N . It is clear also that this function belongs to Xλ for
λ large enough, that is for ε small enough.

Invoking the boundedness of the set S and the Sobolev embedding theorem of L∞(S) into
H−s(S), it is also rather straightforward to conclude that the maximization problem (Pλ) possesses
a solution for all λ large enough. We will prove

Proposition 1. Let 0 < s < 1 be given, then for λ su�ciently large there exists an angular Steiner
symmetric function ωλ ∈ Xλ such that

Es(ωλ) = Eλ.

Moreover, there exist two numbers αλ and µλ such that

ωλ = λ1{ψλ>0}, (22)

where we have set

ψλ := Ksωλ +
αλ
2
| · |2 − µλ. (23)

When 1/2 ≤ s < 1, the function ψλ belongs to W 1,q(S) for any real number q > 1, and it satis�es∫
ωλ(x)∇⊥ψλ(x) · ∇ϕ(x) dx = 0, (24)

for any function ϕ ∈ C∞c (S).

Note that at this level the weak formulation (24) is only known to be valid for test functions
whose support is contained in S. This is related to the aforementioned vanishing constraint of ω
in SN \ S, and will be dealt with in Section 2.2 below.
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2.1.2 The penalized problems

Our proof of Proposition 1 does not rely on a direct variational argument either. Because of the
(eventually activated) L∞-constraint on ω, it seems indeed di�cult to derive (22) and (24) in that
way. Instead, we introduce the penalized functionals

Eλ,p(ω) := Es(ω)− λN

p

∫
S

(
ω

λ

)p
, (25)

for any number p > 1/s, as well as the corresponding maximization problems

Eλ,p := sup
{
Eλ,p(ω) : ω ∈ Lp+(S) s.t. M(ω) = L(ω) = 1

}
, (26)

where the functionals M and L are de�ned here as in (16) and (15) but with integration domain
restricted to S. Due to the boundedness of the set S, we observe that

sup
(r,θ)∈S

∫
S

κs(r, r
′, θ − θ′)q dr′ dθ′ <∞,

when 1 ≤ q < 1/(1 − s). Hence it follows from the Hölder inequality that both the terms in the
right-hand side of (25) are well-de�ned when the vorticity ω lies in Lp(S) with p > 1/s. In this
case, the quantities M(ω) and L(ω) are also well-de�ned, so that the maximization problem (26)
makes sense. Moreover, we can solve this problem as follows.

Lemma 1. Let 0 < s < 1, λ > 0 and p > 1/s. Denote by p′ the Hölder conjugate of p de�ned by
1/p+ 1/p′ = 1. There exists a function ωλ,p ∈ Lp+(S) such that

Eλ,p(ωλ,p) = max
{
Eλ,p(ω) : ω ∈ Lp+(S) s.t. M(ω) = L(ω) = 1

}
. (27)

The function ωλ,p is angular Steiner symmetric and bounded. Moreover, there exist two numbers
αλ,p and µλ,p such that the function ωλ,p can be written as

ωλ,p = λ(ψλ,p)
p′−1
+ , (28)

with

ψλ,p := Ks ωλ,p +
αλ,p

2
| · |2 − µλ,p. (29)

The proof of Lemma 1 is standard. Existence follows from bounding the Lp-norm of the
minimizing sequences corresponding to (26) and from applying standard weak compactness re-
sults. The angular Steiner symmetry of the function ωλ,p is a consequence of Lemmas 10 and 11.
Equations (28) and (29) are no more than the Euler-Lagrange equations of the maximization prob-
lem (26). In particular, the numbers αλ,p and µλ,p are interpreted as the Lagrange multipliers of
the problem. We refer to Subsection 3.1 for more details and the proofs.

2.1.3 Bounds on the maximizers ωλ,p and the Lagrange multipliers αλ,p and µλ,p

Our goal is now to construct solutions of the maximization problems (Pλ) as limits when p→∞
of the functions ωλ,p of Lemma 1. Before passing to this limit, we establish that the Lagrange
multipliers αλ,p and µλ,p are bounded uniformly with respect to p.

Lemma 2. Let 0 < s < 1 and λ > 0. There exists a positive number p0 > 1/s such that there
exists a positive number Cλ independent of p for which the Lagrange multipliers αλ,p and µλ,p in
Lemma 1 satisfy

|αλ,p|+ |µλ,p| ≤ Cλ,

for any p ≥ p0.
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This lemma follows from a uniform bound on the function Ksωλ,p. As a consequence of the
integrability properties of the kernel Ks, there exists a positive number Cλ independent of p such
that ∥∥Ksωλ,p

∥∥
L∞
≤ Cλ.

With this inequality at hand, we can control the support of the function ψλ,p and then of the
function ωλ,p. In case the Lagrange multipliers αλ,p and µλ,p are not bounded independently of p,
this control is enough to establish a contradiction with the constraints M(ωλ,p) = L(ωλ,p) = 1.

We next apply standard regularity estimates to the Euler-Lagrange equations (28) and (29)
in order to bound the functions ωλ,p and ψλ,p uniformly with respect to p. When 1/2 ≤ s < 1,
the functions ωλ,p and ψλ,p own su�cient smoothness so as to satisfy the weak formulation of (4)
in (24). As a matter of fact, this weak formulation follows from the collinearity of the gradients
∇ωλ,p and ∇ψλ,p, which in turn is a consequence of (28) provided that ωλ,p and ψλ,p are smooth
enough. More precisely, we show

Lemma 3. Let 0 < s < 1, λ > 0 and p ≥ p0, where p0 is de�ned in Lemma 2. Consider the
solution ωλ,p to the maximization problem (27) constructed in Lemma 1, and set

ψλ,p = Ksωλ,p +
αλ,p

2
| · |2 − µλ,p,

where αλ,p and µλ,p are the corresponding Lagrange multipliers. There exists a positive number Cλ
independent of p such that

‖ωλ,p‖Lr ≤ Cλ, (30)

for any 1 ≤ r ≤ ∞, while there exist positive numbers Cλ,r(R), not depending on p, such that

‖ψλ,p‖W 2s,r(B(0,R)) ≤ Cλ,r(R), (31)

for any 1 < r < ∞ and any positive number R. In particular, when 1/2 ≤ s < 1, the functions
ωλ,p and ψλ,p satisfy the weak equation∫

S

ωλ,p(x)∇⊥ψλ,p(x) · ∇ϕ(x) dx = 0,

for any function ϕ ∈ C∞c (S).

2.1.4 Convergence in the limit p→∞ towards vortex patch solutions

With Lemmas 2 and 3 at hand, we are in position to complete the proof of Proposition 1. Since the
Lagrange multipliers αλ,p and µλ,p, as well as the functions ωλ,p and ψλ,p, are uniformly bounded
with respect to p, we can invoke a compactness argument in order to take the limit p→∞. This
eventually provides a limit function ωλ ∈ Xλ, which maximizes the energy Es under the constraints
M(ωλ) = L(ωλ) = 1. We next derive from the following lemma that this function is a vortex patch.

Lemma 4 (Bathtub principle for Riesz integrals). Let µ and ν be two positive numbers. Given a
positive number η, set

Gη(R) :=
{
g ∈ L∞(R, [0, 1]) :

∫
R
g ≤ η

}
,

and consider a function f ∈ L1(R), which is even and non-increasing on R+. Then the maximiza-
tion problem

Iµ,ν := sup
(g,h)∈Gµ(R)×Gν(R)

∫
R

∫
R
f(x− y) g(x)h(y) dx dy (32)

is solved by the functions

g = 1[
−µ2 ,

µ
2

] and h = 1[
− ν2 ,

ν
2

].
Moreover, when the function f is decreasing on R+, this solution is unique (up to a translation).
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The proof of this lemma consists in applying the bathtub principle (see e.g. [16, Theorem 1.14])
to the double integral in the right-hand side of (32). Double integrals taking this form are usually
called Riesz integrals in reference to the Riesz rearrangement inequality [20]. For �xed numbers r
and r′, the integrals depending on the variables θ and θ′ in the expression (18) of the energy Es
are exactly of this form. In particular, it su�ces to apply Lemma 4 to them in order to prove that
the functions ωλ are the characteristic functions of measurable sets Ωλ.

The proof of Proposition 1 then reduces to establish that these sets are equal to the upper level
sets {ψλ > 0}. In the limit p→∞, we deduce from (28) that

{ψλ > 0} ⊂ Ωλ ⊂ {ψλ ≥ 0}.

It then results from the monotonicity properties of the kernel κs given by Lemma 12 that the
functions θ 7→ ψλ(r, θ) are decreasing on (0, π/2N) for any �xed number 1

2 < r < 2. As a
consequence, the level sets {ψλ = 0} have measure zero, which eventually gives (22).

Note also that the weak equation (24) follows as in the proof of Lemma 3 from the fact that
ψλ belongs to the Sobolev spaces W 1,r(S) for any 1 < r < ∞ when 1/2 ≤ s < 1. We refer to
Subsection 3.5 for more details and the proofs.

2.2 Description of the vortex patch support

The purpose of this section is to complete the description of the support of the vorticity ωλ obtained
in Proposition 1. We will eventually show in Proposition 2 that it is entirely contained in N small
balls centered at the vertices of a regular polygon, at least when λ is su�ciently large. Combining
Proposition 1 with Proposition 2, the proof of Theorem 1 will then easily follow in Section 2.3.

In a �rst step, we consider functions ω that are merely of the form

ω = λ1Ω, Ω ⊂ S measurable, M(ω) = 1. (33)

Clearly, ωλ1S is such a function. For arbitrary measurable sets X, X ′ in R2, we next de�ne the
localized energy

Is(ω,X,X
′) :=

∫
X

∫
X′

(
ε

|x− x′|

)2(1−s)

ω(x′)ω(x)dx′dx

and the localized concentration of mass

M(ω,X) :=

∫
X

ω(x)dx.

We also let

Is :=
1

π2

∫
B(0,1)

∫
B(0,1)

dx dx′

|x− x′|2(1−s) = Is(λ1B(0,ε),R2,R2). (34)

The quantity Is is positive and elementary computations show that 1
6 ≤ sIs ≤ 1 for all s ∈ (0, 1),

in particular it is bounded and bounded away from zero independently of s.
We infer the following from the Riesz rearrangement inequality [20]. This provides lower bounds

on the localized concentration of mass in terms of the localized energy.

Lemma 5. Assume that ω satis�es (33) and X,X ′ ⊂ R2 are measurable. Then

Is(ω,X,X) ≤ IsM(ω,X)1+s,

Is(ω,X,X
′) ≤ 1

s
M(ω,X)M(ω,X ′)s,

Is(ω,X,X
′) ≤

(
ε

dist(X,X ′)

)2(1−s)

M(ω,X)M(ω,X ′),

where the last inequality is only meaningful provided that

dist(X,X ′) := inf
x∈X

inf
x′∈X′

|x− x′|

has positive value.
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Being a solution of the minimisation problem (Pλ), we can derive some �rst tight local energy
estimates for ωλ using a comparison argument with the test function $λ introduced in (21).

Lemma 6. Let ωλ be a solution to (Pλ). There exists a positive number C, depending only on s,
such that the bounds

Is ≤ Is(ω, S, S) ≤ Is + Cε2(1−s) (35)

hold for ω := ωλ1S .

For functions of the form (33) and for which (35) holds, one can obtain a �rst weak form of
concentration by an elementary covering argument.

Lemma 7. There exist positive numbers Λ0 and η depending only on s such that if ω is of the
form (33) and satis�es the bounds (35), then there exists x ∈ S such that

M(ω,B(x,Λ0ε)) ≥ η > 0. (36)

Combining Lemmas 5, 6 and 7 with a more elaborate convexity and combinatory argument, we
then show that splitting vorticity is not favourable and obtain a decay estimate for the vorticity
density.

Lemma 8. There exists a constant C > 0, depending only on s, such that if ω is of the form (33)
and satis�es the bounds (35), then

M
(
ω, S \ B

(
(1, 0),Λε

))
≤ C

Λγs
, ∀Λ > 0,

where the decay rate γs is given by γs := (1 + 1
2(1−s) )−1.

At this point we have only used arguments which rely on tight energy bounds for ω. It is hopeless
to expect that complete concentration of vorticity such as the one stated in (iii) of Theorem 1 could
hold under such assumptions only (it is indeed not complicated to build counter-examples). For the
next step of the argument, we therefore restrict our focus to the solutions ωλ of the maximization
problem (Pλ), in order to exploit the equations (22)-(23).

Note that (22)-(23) only implies a very weak form of regularity, especially when s is small. For
that reason, we rely on �nite di�erences of ψλ at di�erent pairs of well-chosen points inside and
outside of supp(ωλ) and combine the resulting identities with integral estimates based on the decay
obtained in Lemma 8. The �rst localization result that we prove is the following.

Lemma 9. There exists a positive constant Λ depending only on s such that if ωλ is a solution of
the maximization problem (Pλ) then

supp(ωλ) ∩SN ⊆ B((1, 0),Λε) ∪B, (37)

where
B :=

{
(r, θ) ∈ S : 2− 1/8 ≤ r ≤ 2 or 1/2 ≤ r ≤ 1/2 + 1/8

}
⊆ S.

As explained with more details in the proof, it is not possible to eliminate a possible residual
accumulation of mass far from B((1, 0),Λε) with arguments using �nite di�erences of ψλ. At this
stage of the proof, the case M(ωλ, B) > 0 (even very small) cannot be excluded. Nevertheless,
there is a gap of order 1 (with respect to ε) between the two sets B(x,Λε) and B and then, using
again energetical arguments, we can prove that M(ωλ, B) > 0 contradicts the maximality of ωλ.
Here is the conclusive localization result.

Proposition 2. There exists a positive constant Λ, depending only on s, such that if ωλ is a
solution of the maximization problem (Pλ) then

supp(ωλ) ∩SN ⊆ B((1, 0),Λε).

In particular, if λ is su�ciently large we have

dist
(

supp(ωλ), SN \ S
)
> 0, (38)

and therefore for 1/2 ≤ s < 1 the function ωλ is a weak solution to (4) in the sense of (5).
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2.3 Proof of Theorem 1 completed

Combining Propositions 1 and 2, we deduce that statements (i), (ii) and (iii) of Theorem 1 hold.
It only remains to establish statements (iv) and (v), which concern the asymptotic as λ tends to
+∞, that is (11), (12) and (13).

The convergence in (11) is immediate. It follows from the constraints M(ωλ) = L(ωλ) = N ,
the rotational and Steiner symmetry assumptions, and Proposition 2.

Concerning the convergence in (12), it can be computed exactly using the equations (9) and
(10) for ωλ. This is the reason why we need to assume 1 that 1

2 ≤ s < 1.
Let y = (y1, y2) ∈ R2 be arbitrary, and consider a test function ϕ ∈ C∞(S) such that

ϕ(x) =
|x|2

2
+ y · x, ∀x ∈ supp(ωλ).

From (5) we deduce therefore that

αλT1,λ,y = cs(1− s)T2,λ,y,

where

T1,λ,y =

∫
S

ωλ(x)x⊥ · y dx,

T2,λ,y =

∫
S

∫
S

ωλ(x)ωλ(x′)

N−1∑
n=1

(
x−R 2nπ

N
x′
)⊥∣∣x−R 2nπ

N
x′
∣∣4−2s ·

(
y −R 2nπ

N
y
)
dx dx′.

In view of (9) and statement (iii) of Theorem 1, we can pass to the limit λ → +∞ in the above
two terms and obtain

T1,λ,y −→ y2, and T2,λ,y −→
N−1∑
n=1

(
(1, 0)−R 2nπ

N
(1, 0)

)⊥∣∣(1, 0)−R 2nπ
N

(1, 0)
∣∣4−2s ·

(
y −R 2nπ

N
y
)
.

Taking y = (0, 1) = (1, 0)⊥, the conclusion (12) follows.
Finally we consider (13), whose proof bares resemblance with the one of Proposition 2. We

�rst take an arbitrary point y ∈ B((1, 0), 2ε) \ Ωλ (such a point exists since by de�nition ε is the
radius of a ball with the same area 1/λ as Ωλ), so that ψλ(y) ≤ 0, and therefore

Ksωλ(y) +
αλ
2
|y|2 ≤ µλ. (39)

On the other hand, from (iii) we infer that

Ksωλ(x) ≥
∫
S

ωλ(x′)

|x− x′|2(1−s) dx
′ − C

=

∫
B((1,0),C

√
πε)

ωλ(x′)

|x− x′|2(1−s) dx
′ − C ≥ 1

Cλ1−s − C.

Combining both inequalities and using the fact that αλ is already known to be uniformly bounded
by (12), we deduce the lower estimate in (13). Concerning the upper estimate, we consider instead
a point x ∈ B((1, 0), C/

√
λ) ∩ Ωλ. Then ψλ(y) ≥ 0, and therefore

µλ ≤ Ksωλ(x) +
αλ
2
|x|2. (40)

On the other hand by rearrangement

Ksωλ(x) ≤
∫
B((1,0),2C/

√
λ)

ωλ(x′)

|x− x′|2(1−s) dx
′ + C ≤

∫
{|x′|≤ε}

λ

|x′|2(1−s) dx
′ + C ≤ C

λ1−s + C,

and the upper estimate for µλ follows similarly. This ends the proof of Theorem 1.

1We do not know if this is only technical.
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3 Details of the proofs

We present in this section, in the order of appearance, the proofs of all the claims that were
postponed from Section 2.

3.1 Proof of Lemma 1

We �rst establish the existence of the maximizing vorticity ωλ,p. Recall that the kernel κs is de�ned
so as to satisfy

κs(r, r
′, θ − θ′) =

N−1∑
n=0

cs(
r2 + r′2 − 2rr′ cos

(
θ − θ′ − 2nπ

N

))1−s ,

for x = (r cos(θ), r sin(θ)) and x′ = (r′ cos(θ′), r′ sin(θ′)). Hence, we derive from the boundedness
of S that

sup
(r,θ)∈S

∫
S

κs(r, r
′, θ − θ′)p

′
r′ dr′ dθ′ <∞, (41)

under the condition p > 1/s. Given any function ω ∈ Lp(S), we infer from the Hölder inequality
that

‖Ksω‖L∞ ≤ C‖ω‖Lp , (42)

where the number C only depends on s. The energy Es is then controlled by

Es(ω) ≤ CN

2
‖ω‖L1‖ω‖Lp =

CN

2
‖ω‖Lp , (43)

under the conditions ω ≥ 0 and M(ω) = 1. We next apply the Young inequality in order to obtain

Es(ω) ≤
(Cλ 1

p′N
1
p′

2

)(N 1
p ‖ω‖Lp

λ
1
p′

)
≤ Kλ,p +

λN

p

∫
S

(ω
λ

)p
.

Here, the constant Kλ,p := Cp
′
λN/(2p

′
p′) is uniformly bounded with respect to p → ∞, and it

controls the penalized energy as
Eλ,p(ω) ≤ Kλ,p. (44)

In particular, the value of the supremum Eλ,p in (26) is �nite.
In another direction, we also deduce from (43) that

λ1−pN

p
‖ω‖pLp ≤

CN

2
‖ω‖Lp − Eλ,p(ω) ≤ Cp

′
λN

2p′
+
λ1−pN

2p
‖ω‖pLp − Eλ,p($λ),

when Eλ,p($λ) ≤ Eλ,p(ω). Here, the notation $λ refers as before to the function in (21). We next
obtain

‖ω‖pLp ≤ (p− 1)λpCp
′
− 2pλp−1

N
Eλ,p($λ), (45)

so that there exists a maximizing sequence (ωj)j∈N for (26), which is bounded in Lp(S). Hence,
there exists a function ωλ,p ∈ Lp(S) such that, up to a subsequence, (ωj)j∈N weakly tends to ωλ,p
in Lp(S). This convergence is enough to guarantee that ωλ,p ≥ 0 a.e., as well as the identities
M(ωλ,p) = 1 and L(ωλ,p) = 1. Moreover,

Eλ,p = lim sup
j→∞

Eλ,p(ωj) ≤ Eλ,p(ωλ,p). (46)

Indeed, estimate (41) implies that κs ∈ Lp
′
(S2), and the functions (x, y) 7→ ωj(x)ωj(y) weakly

tend to the function (x, y) 7→ ωλ,p(x)ωλ,p(y) in Lp(S2) as j →∞. Therefore, the quantities Es(ωj)
converge to Es(ωλ,p), and inequality (46) follows from the weak lower semi-continuity of the Lp-
norm. Finally, this inequality guarantees that the limit vorticity ωλ,p solves the maximization
problem (26). Moreover, we can invoke Lemmas 10 and 11 in order to claim that the vorticity ωλ,p
is angular Steiner symmetric.

12



We now turn to the proof of (28) and (29). These two equations correspond to the Euler-
Lagrange equations of the maximization problem (26). In order to write them, we observe that,
given any measurable subset X of S with positive measure, the non-vanishing linear forms M and
L are linearly independent on L∞(X). Otherwise, there exists a number a 6= 0 such that∫

X

(a− |x|2)ϕ(x) dx = 0,

for any ϕ ∈ L∞(X). In particular, the function x 7→ a − |x|2 vanishes almost everywhere on X,
which is only possible when a is positive and X is a subset of the circle of center (0, 0) and radius√
a. Since this circle is of measure 0, this contradicts the fact that X has positive measure. As

a consequence of the linear independence of M and L on L∞(X), we conclude that the linear
mapping ϕ 7→ (M(ϕ), L(ϕ)) is onto R2.

Consider next a positive number δ such that Xδ = {ωλ,p ≥ δ} has positive measure. Note that
all the numbers δ small enough satisfy this assumption, otherwise the vorticity ωλ,p vanishes, which
contradicts the conditionM(ωλ,p) = 1. Taking into account the previous arguments, we derive the
existence of two functions ϕ1 and ϕ2 in L

∞(Xδ) withM(ϕ1) = L(ϕ2) = 1 andM(ϕ2) = L(ϕ1) = 0.
In particular, given any function ζ ∈ L∞(S) such that ζ ≥ 0 on S\Xδ, we can introduce the function

ωh = ωλ,p + h
(
ζ −M(ζ)ϕ1 − L(ζ)ϕ2

)
,

for any positive number h. When this number is small enough, we check that this function belongs
to Lp+(S), with M(ωh) = L(ωh) = 1. The maximizing nature of the vorticity ωλ,p then gives

0 ≥ lim
h→0+

d

dh

(
Eλ,p(ωh)

)
= E′λ,p(ωλ,p) ζ −M(ζ)E′λ,p(ωλ,p)ϕ1 − L(ζ)E′λ,p(ωλ,p)ϕ2.

In this expression, the di�erential E′λ,p(ω) is given by

E′λ,p(ω)ζ = N

∫
S

ζ

(
Ksω −

(ω
λ

) 1
p′−1

)
.

Setting µλ,p = E′λ,p(ωλ,p)ϕ1/N , αλ,p = −2E′λ,p(ωλ,p)ϕ2/N and ψλ,p(x) := Ksωλ,p(x) +αλ,p|x|2/2
− µλ,p as in (29), we obtain ∫

S

ζ

(
ψλ,p −

(ωλ,p
λ

) 1
p′−1

)
≤ 0.

Going back to the condition ζ ≥ 0 on S \Xδ, we infer that

ψλ,p =
(ωλ,p

λ

) 1
p′−1

on Xδ, and ψλ,p ≤
( δ
λ

) 1
p′−1

on S \Xδ.

Equation (28) follows by taking the limit δ → 0.
Finally, it follows from (42) that the function ψλ,p is bounded on S. In view of (28), so is the

vorticity ωλ,p. This completes the proof of Lemma 1.

3.2 Proof of Lemma 2

The proof relies on a uniform bound on the function Ksωλ,p, which is derived from estimates (42)
and (45). Indeed, we deduce from the de�nition of the function $λ that

Eλ,p($λ) = Es($λ)− N

p
.

Since p > 1/s, this gives ∣∣Eλ,p($λ)
∣∣ ≤ Cλ,

where Cλ denotes, here as in the sequel, a positive number not depending on p and possibly
changing from line to line. Hence, we infer from (42) and (45) that

‖Ksωλ,p‖L∞ ≤ Cλ. (47)
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As a consequence of its de�nition, the function ψλ,p then satis�es

αλ,p
2
r2 − µλ,p − Cλ ≤ ψλ,p(r, θ) ≤

αλ,p
2
r2 − µλ,p + Cλ. (48)

If the Lagrange multipliers αλ,p and µλ,p were not bounded independently of p, these estimates
would provide a contradiction with the constraints M(ωλ,p) = L(ωλ,p) = 1.

More precisely, let us now assume that

µλ,p → +∞, (49)

as p → ∞. In this case, we can suppose that µλ,p > Cλ for p large enough. It then follows from
inequalities (48) that αλ,p > 0. Otherwise, the function ψλ,p is non-positive, which eventually
contradicts the constraint M(ωλ,p) = 1. Consider next the number

r0(ψλ,p) := inf
−π/4≤θ≤π/4

(
infess

(
supp(r 7→

(
ψλ,p)+(r, θ)

)))
.

Since the function (ψλ,p)+ is angular Steiner symmetric, this in�mum is achieved for θ = 0. Observe
that the inequality f ≥ g implies that r0(f) ≤ r0(g). Therefore, we derive from (48) that

r0(ωλ,p) = r0(ψλ,p) ≥ r0

(αλ,p
2
| · |2 − µλ,p + Cλ

)
=

√
2

αλ,p
(µλ,p − Cλ) := r∗0 .

Similarly, we obtain

r0(ωλ,p) = r0(ψλ,p) ≤ r0

(αλ,p
2
| · |2 − µλ,p − Cλ

)
=

√
2

αλ,p
(µλ,p + Cλ) := r∗1 ,

and we notice that

r∗0
r∗1

=

√
µλ,p − Cλ
µλ,p + Cλ

→ 1. (50)

when p→∞. Given a positive number δ < 1, we now face two possibilities.

Case 1. lim supp→∞ r∗1 ≥ 1 + δ.

It then follows from (50) that
lim sup
p→∞

r∗0 ≥ 1 + δ,

and we obtain the following contradiction

1 =

∫
S

|x|2ωλ,p(x)dx ≥ r0(ωλ,p)
2

∫
S

ωλ,p ≥ (r∗0)2

∫
S

ωλ,p = (r∗0)2 > 1, (51)

with the constraints M(ωλ,p) = L(ωλ,p) = 1 for a number p large enough.

Case 2. lim supp→∞ r∗1 ≤ 1 + δ.

In this case, we have r∗1 ≤ 1 + δ for any number p large enough. Combining the constraint
M(ωλ,p) = 1 with (48), we get∫ 2

r∗1

(αλ,p
2
r2 − µλ,p − Cλ

)p′−1

rdr ≤ 1

λπ
. (52)

The computation of the integral leads to

αλ,p
2

4− µλ,p − Cλ ≤
(
p′αλ,p
λπ

) 1
p′

.

Assuming that δ is small enough and applying the Young inequality to the right-hand side of this
inequality give

αλ,p
2

4− µλ,p − Cλ ≤
δ αλ,p

2
+

1

p

(
2

δλπ

) p
p′

,
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and then

(4− δ)αλ,p
2
≤ 1

p

(
2

δλπ

) p
p′

+ µλ,p + Cλ.

In view of the de�nition of r∗0 , we are led to

(r∗0)2 ≥ (4− δ)(µλ,p − Cλ)

µλ,p + Cλ + 1
p

(
2
δλπ

)p−1 →
µλ,p→∞

42 − δ.

Since δ is arbitrary small, we �nally get a contradiction by arguing as for (51).

We conclude that assumption (49) does not hold, and we can argue similarly in order to prove
that µλ,p does not converge towards −∞ when p→∞. This shows that the numbers µλ,p remain
bounded in this limit, and so do the numbers αλ,p due to the constraint M(ωλ,p) = 1.

3.3 Proof of Lemma 3

The proof relies on standard regularity theory. In view of the de�nition of the function ψλ,p, we
can derive from (47) and Lemma 2 that

‖ψλ,p‖L∞ ≤ Cλ, (53)

where Cλ denotes, here as in the sequel, a positive number not depending on p and possibly
changing from line to line. In view of (28), we obtain

‖ωλ,p‖L∞ ≤ λC
1
p−1

λ .

Since p ≥ p0, this is enough to get

‖ωλ,p‖L∞ ≤ Cλ,

and to deduce (30) from the constraint M(ωλ,p) = 1 and the Hölder inequality. As a consequence
of (53), we also observe that

‖ψλ,p‖Lr(B(0,R)) ≤ CλR
2
r , (54)

for any 1 ≤ r ≤ ∞ and any positive number R.

For 1 < r < ∞, we next recall the existence of a positive number As,r, depending only on s
and r, such that

‖Ksf‖Ẇ 2s,r(R2) ≤ As,r‖f‖Lr(R2), (55)

for any function f ∈ Lr(R2). Applying this inequality to the function f = ωλ,p1supp(ωλ,p), we
obtain

‖Ksωλ,p‖Ẇ 2s,r(R2) ≤ As,r‖ωλ,p‖Lr(S),

and (31) results from (54) and Lemma 2.

When 1/2 ≤ s < 1, this guarantees that the function ψλ,p lies in W
1,r(S) for any 1 < r < ∞,

so that its positive part (ψλ,p)+ is also in these spaces. Hence, we can compute

∇⊥
(

(ψλ,p)
p′

+

)
= p′(ψλ,p)

p′−1
+ ∇⊥ψλ,p =

p′

λ
ωλ,p∇⊥ψλ,p,

and this identity holds in the sense of integrable functions. Given a function ϕ ∈ C∞c (S), we
conclude that∫

S

ωλ,p(x)∇⊥ψλ,p(x) · ∇ϕ(x) dx =

∫
S

∇⊥
(

(ψλ,p)
p′

+

)
(x) · ∇ϕ(x) dx = 0,

by integrating by parts.
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3.4 Proof of Lemma 4

Invoking the Riesz rearrangement inequality, we reduce the analysis of the maximization prob-
lem (32) to the situation where both the functions g and h are even and non-increasing on R+.
In this case, since the function f is even and non-increasing on R+, so is the function f ? g. In
particular, the sets {f ? g > t} have �nite measure for any positive number t. Therefore, we can
apply the bathtub principle in [16, Theorem 1.14] in order to show that the function hµ = 1[

−µ2 ,
µ
2

]
is a solution to the problem

Jµ := max
h∈Gµ(R)

∫
R
f ? g(y)h(y) dy.

Moreover, when f is decreasing on R+, so is the function f ?g, and the bathtub principle guarantees
the uniqueness of the solution hµ. We �nally complete the proof of Lemma 4 by observing that
the functions g and h play symmetric roles in the maximization problem (32).

3.5 Proof of Proposition 1

Let p > 1/s. Consider a solution ωλ,p to the maximization problem (27) and the corresponding
Lagrange multipliers αλ,p and µλ,p given by Lemma 1. Up to an omitted subsequence, we �rst
derive from Lemma 2 the existence of two numbers αλ and µλ such that

αλ,p → αλ and µλ,p → µλ, (56)

when p → ∞. In view of Lemma 3, we can invoke the Sobolev embedding theorem in order to
exhibit a continuous function ψλ : R2 → R such that, up to a further subsequence,

ψλ,p → ψλ in L∞(B(0, R)), (57)

as p→∞, for any positive number R. In particular, this convergence provides

lim sup
p→∞

∥∥ωλ,p∥∥L∞(S)
≤ λ lim

p→∞

∥∥(ψλ,p)+

∥∥p′−1

L∞(S)
≤ λ. (58)

Going back to Lemma 3, we can apply the Banach-Alaoglu theorem to construct a non-negative
function ωλ ∈ L∞(S) such that, up to a further subsequence,

ωλ,p
?
⇀ ωλ in L∞(S), (59)

when p→∞. In view of (58), the function ωλ lies in L∞λ (S) and we can extend it as a function in
Xλ by performing a N -fold symmetrization. Moreover, we infer from (56), (57) and (59) that the
function ψλ is given by (23).

We now check that this function solves the maximization problem (Pλ). Since the maps x 7→ 1
and x 7→ |x|2 are locally integrable, we derive from the constraintsM(ωλ,p) = L(ωλ,p) = 1 and (59)
that M(ωλ) = L(ωλ) = N . Consider next a function ω ∈ Xλ such that M(ω) = L(ω) = N . It
follows from Lemma 1 and (58) that

Es(ω) ≤ Es(ωλ,p) +
λN

p

∫
S

(ω
λ

)p
≤ Es(ωλ,p) +

λN |S|
p

.

Invoking the compact embedding of L∞(S) into Ḣ−s(S), we can extract a further subsequence for
which

Es(ωλ,p)→ Es(ωλ),

when p→∞. Hence, we are led to

Es(ω) ≤ Es(ωλ),

by taking the limit p → ∞ in the previous inequality. Therefore, the function ωλ solves the
maximization problem (Pλ).
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At this point, we explain why the function ωλ is a vortex patch. Given any function ω ∈ L∞λ (S),
we de�ne the function ω̂ as being the only angular Steiner symmetric function of L∞λ (S), with values
into the pair {0, λ}, such that ∫ π

2N

− π
2N

ω(r, θ) dθ =

∫ π
2N

− π
2N

ω̂(r, θ) dθ,

for almost any 1
2 < r < 2. Using the decreasing nature of the map ξ 7→ κs(r, r

′, ξ) given by
Lemma 12, we deduce from Lemma 4 that∫ π

2N

− π
2N

∫ π
2N

− π
2N

ks(r, r
′, θ − θ′)ω1(r, θ)ω2(r′, θ′) dθ dθ′

≤
∫ π

2N

− π
2N

∫ π
2N

− π
2N

ks(r, r
′, θ − θ′) ω̂1(r, θ) ω̂2(r′, θ′) dθ dθ′,

for any functions (ω1, ω2) ∈ L∞λ (S)2 and almost any (r, r′) ∈ (R+)2. Moreover, this inequality is
an equality if and only if ω1(r, ·) = ω̂1(r, ·) and ω2(r,′ ·) = ω̂2(r′, ·) for almost any −π/(2N) ≤ θ ≤
π/(2N). Therefore, we deduce

Es(ω) ≤ Es(ω̂),

with equality if and only if ω = ω̂. This guarantees that the function ωλ = ω̂λ is angular Steiner
symmetric, and up to the multiplicative factor λ, equal to the characteristic function of a measur-
able subset Ωλ of S.

Since ωλ,p = (ψλ,p)
p′−1
+ , we derive from (57) that this set satis�es{

ψλ > 0
}
⊆ Ωλ ⊆

{
ψλ ≥ 0

}
.

In order to conclude that this set matches (up to a set of measure 0) with the support of the
function (ψλ)+, we are reduced to show that the set {ψλ = 0} has zero measure. Let 1

2 < r < 2
and 0 < θ1, θ2 < π/4, with θ1 < θ2. In view of de�nition (23), we compute

ψλ(r, θ1)− ψλ(r, θ2) = Ksωλ(r, θ1)−Ksωλ(r, θ2)

=

∫ 2

1
2

∫ π
2N

0

(
ks(r, r

′, θ′ − θ1)− ks(r, r′, θ′ − θ2)
)
ωλ(r′, θ′) r′ dr′ dθ,

and this double integral is positive due to the fact that the map ξ 7→ ks(r, r
′, ξ) is decreasing on

(0, π/2N) as a consequence of Lemma 12 below. By the Fubini theorem, we conclude that the
measure of the set {ψλ = 0} is equal to 0, which eventually provides (22).

We �nally turn to the proof of (24). When 1/2 ≤ s < 1, Lemma 3 guarantees that the
functions ψλ,p are uniformly bounded in W 1,r(B(0, R)) with respect to p → ∞ for any exponent
1 < r < ∞ and any positive number R. As a consequence, we can assume that the function ψλ
lies in W 1,r

loc (R2). In particular, we are allowed to write

∇⊥
(
(ψλ,p)+

)
= 1{ψλ>0}∇⊥ψλ,p,

so that, by integrating by parts,∫
S

ωλ(x)∇⊥ψλ(x) · ∇ϕ(x) dx = λ

∫
S

∇⊥
(
ψλ
)

+
(x) · ∇ϕ(x) dx = 0,

for any function ϕ ∈ C∞c (S). This completes the proof of Proposition 1.

3.6 Proof of Lemma 5

We infer from the Riesz rearrangement inequality that∫
X

∫
X

(
ε

|x−x′|

)2(1−s)
ω(x)ω(x′) dx dx′ ≤ λ2

∫
B(0,ε
√
M(ω,X))

∫
B(0,ε
√
M(ω,X))

(
ε

|x−x′|

)2(1−s)
dx dx′,
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and the �rst inequality in the statement of the lemma follows from the de�nition of Is. Regarding
the second statement, since the map x 7→ |x|2(s−1) is radially decreasing, we can rearrange the
function ω so as to write∫

X

ω(x′)

∫
X′

(
ε

|x− x′|

)2(1−s)

ω(x) dx dx′ ≤ λ
∫
X

ω(x′)

∫
B(x,ε
√
M(ω,X′))

(
ε

|x− x′|

)2(1−s)

dx dx′

= λM(ω,X)

∫
B(0,ε
√
M(ω,X′))

(
ε

|y|

)2(1−s)

dy.

and the conclusion follows from the identity λπε2 = 1. Finally, the last statement is a direct
consequence of the inequality

|x− x′| ≥ d(X,X ′),

which holds for any x ∈ X and x′ ∈ X ′.

3.7 Proof of Lemma 6

On the one hand, since ωλ is the maximizer of the energy Es,

Es($λ) ≤ Es(ωλ), (60)

where $λ was de�ned in (21). Then,

Es($λ) ≥ cs
∫
S

∫
S

λ1B((rε,0),ε)(x)λ1B((rε,0),ε)(x
′)

|x− x′|2(1−s) dx dx′ =
cs

ε2(1−s) Is.

Together with (60), this gives the lower bound in (35). Concerning the upper bound,

Es(ωλ) ≤ cs
∫
S

∫
S

ωλ(x)ωλ(x′)

|x− x′|2(1−s) dx dx
′ + C.

Using the Riesz rearrangement inequality,

Es(ωλ) ≤ cs
∫
S

∫
S

λ1B(0,ε)(x)λ1B(0,ε)(x
′)

|x− x′|2(1−s) dx dx′ + C =
cs

ε2(1−s) Is + C.

The lemma is proved.

3.8 Proof of Lemma 7

First, we expand the double integral in (35) as

Is(ω, S, S) =

∫
S

∫
B(x,Λ0ε)

(
ε

|x− x′|

)2(1−s)

ω(x′)dx′ω(x)dx

+

∫
S

∫
B(x,Λ0ε)c

(
ε

|x− x′|

)2(1−s)

ω(x′)dx′ ω(x)dx.

Let η > 0 and C > 0 to be precised later, and set

ΥΛ0
η :=

{
x ∈ supp(ω) : meas

(
B(x,Λ0ε) ∩ supp(ω)

)
≥ ηπε2

}
. (61)

Assume for the sake of a contradiction that ΥΛ0
η is empty. Then a rearrangement argument with

respect to the variable x′ yields∫
S

∫
B(x,Λ0ε)

(
ε

|x− x′|

)2(1−s)

ω(x′)dx′ω(x)dx < λ

∫
S

∫
B(x,
√
ηε)

(
ε

|x− x′|

)2(1−s)

dx′ω(x)dx =
ηs

s
.
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On the other hand, we check that∫
S

∫
B(x,Λ0ε)c

(
ε

|x− x′|

)2(1−s)

ω(x′)dx′ω(x)dx ≤ 1

Λ
2(1−s)
0

,

so that using (35) we obtain

sIs < ηs +
s

Λ
2(1−s)
0

.

In view of the inequality sIs ≥ 1
6 , this provides the desired contradiction if we choose η su�ciently

small and Λ0 su�ciently large (both depending only on s). It su�ces then to choose for x an
arbitrary point in ΥΛ0

η .

3.9 Proof of Lemma 8

Step 1. Let A ⊂ B be arbitrary measurable subsets in R2 such that Kε := d(A,Bc) > 0. We
decompose the double integral in Lemma 6 as

Is ≤ Is(ω,A,A) + Is(ω,B \A,B \A) + Is(ω,B
c, Bc)

+ 2Is(ω,A ∪Bc, B \A) + 2Is(ω,A,B
c).

(62)

To further simplify the notations, we also set

η0 := M(ω,A), η1 := M(ω,B \A) and η2 := M(ω,Bc),

and in particular since M(ω) = 1 we have η0 + η1 + η2 = 1.
We now apply the estimates in Lemma 5 to (62). More precisely, we apply the �rst one for the

�rst three terms in (62), the second one for the fourth term, and the third one for the last term.
This yields, after division by Is,

1 ≤ η1+s
0 + η1+s

1 + η1+s
2 +

2

Is

(
η1(η0 + η2)s

s
+

η0η2

K2(1−s)

)
. (63)

Since η0, η1, η2 and η0 + η2 are less than 1, we further deduce

1 ≤ ηs+1
0 + ηs+1

2 +
(

1 +
2

sIs

)
η1 +

2

IsK2(1−s) . (64)

In (64), we wish to view the last two terms as negligible, which requires in particular η1 to be
small, and then use a convexity inequality to deduce that the one on the left hand side cannot be
too much spread across η0 and η2. More precisely, we require K to satisfy K ≥ Λ0, where Λ0 is the
constant obtained from Lemma 7, and we de�ne A = B(x,mKε) and B = B(x, (m+ 1)Kε) where
x is also given by Lemma 7 and m ∈ N∗ is to be chosen hereafter. Note that since B(x,Λ0ε) ⊂ A,
by Lemma 7 we have

η0 ≥ η > 0. (65)

The integer m ≥ 1 is chosen in such a way that η1 = M(ω,B \ A) is small. By additivity of
the integral, and since M(ωλ, S) = 1, we may �nd 1 ≤ m ≤ K2(1−s) such that η1 ≤ 1/K2(1−s).
From (64), we therefore obtain

1− ηs+1
0 − (1− η0)s+1 ≤

(
1 +

2(1 + s)

sIs

) 1

K2(1−s) .

We now use the concavity of the function t 7−→ 1− ts+1 − (1− t)s+1 on the segment [0, 1] in order
to obtain

1− ts+1 − (1− t)s+1 ≥ (1− 2−s)

(
1

2
−
∣∣∣t− 1

2

∣∣∣),
so that we are reduced to the alternative

η0 ≤
C

K2(1−s) or 1− η0 ≤
C

K2(1−s) , (66)
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for some constant C depending only on s. If K is chosen su�ciently large, only the �rst alternative
can hold in view of (65). Note also that mK ≤ K1+2(1−s). We �nally �x the value of K in such
a way that K1+2(1−s) = Λ, provided Λ is su�ciently large so that the previous requirements on
K hold with such a choice. If it is not the case, then the conclusion of Lemma 8 can simply
be obtained by choosing C su�ciently large so that C/Λγs ≥ 1, in which case it yields a trivial
inequality. Therefore,

M(ω,B(x,Λε)c) ≤ 1− η0 ≤
C

K2(1−s) =
C

Λγs
. (67)

Step 2. To conclude the proof this lemma, we show that in the above estimate, x can be chosen
equal to (1, 0). We start with the following lower and upper bound of L(ω) using |x′| ≤ 2,(

inf
x′∈B(x,Λε)

|x′|2
)
M
(
ω,B(x,Λε)

)
≤ L(ω)

≤
(

sup
x′∈B(x,Λε)

|x′|2
)
M
(
ω,B(x,Λε)

)
+ 4M

(
ω, S \ B(x,Λε)

)
.

(68)

We note that in the statement of Lemma 7, if in addition ω is assumed to be angular Steiner
symmetric then the point x can be chosen of the form x = (r, 0). Indeed, under Steiner symmetry
the required inequality is improved by shifting x along the angular variable until it reaches the
horizontal axis. With x = (r, 0), the estimate (68) becomes(

r − Λ2

πλ

)
M
(
ω,B(x,Λε)

)
≤ L(ω) ≤

(
r +

Λ2

πλ

)
M
(
ω,B(x,Λε)

)
+ 4M

(
ω, S \ B(x,Λε)

)
.

In view of the constraints M(ω) = L(ω) = 1 and using (67),(
r − Λ2

πλ

)(
1− C

Λγs

)
≤ 1 ≤ r +

Λ2

πλ
+ 4

C

Λγs
.

Since Λ is any positive number, in the limit λ → ∞, this gives x = (r, 0) → (1, 0). Using again
the constraint M(ω) = L(ω) = 1 and (67) improves the convergence with |x− (1, 0)| ≤ Cε. With
such a convergence rate at hand, we can transform (67) into

M(ω,B((1, 0),Λε)c) ≤ C

Λγs
,

which is the announced estimate.

3.10 Proof of Lemma 9

In this proof, we focus on the support of the vorticity, that is the subset of S, which is composed
of the points x ∈ S such that ψλ(x) ≥ 0. Under this condition, we can come back to the de�nition
of the function ψλ in order to obtain the inequality

0 ≥ ψλ(y)− ψλ(x) = Ksωλ(y)−Ksωλ(x) +
α

2

(
|y|2 − |x|2

)
, (69)

for any point y ∈ S such that ψλ(y) ≤ 0. In order to establish that the support of the vorticity has
no intersection with the complementary set of B((1, 0), 2Λε)∪B, we rely on the previous inequality
for two di�erent choices of the point y. Technically, our argument �rst requires to prove the two
following estimates on the function Ksωλ.

Let Λ be a positive number. When z ∈ B((1, 0),Λε), we can use the fact that B((1, 0),Λε) ⊆ S
in order to get the lower estimate

Ksωλ(z) ≥ cs
∫
S

ωλ(y)

|z − y|2(1−s) dy − C ≥
cs

(2Λε)2(1−s)M(ωλ,B((1, 0),Λε))− C. (70)

On the contrary, for z ∈ B((1, 0), 2Λε)c, we can split the integration domain S into the ball
B((1, 0),Λε) and its complementary set, so as to obtain

Ksωλ(z) ≤ cs
∫
S

ωλ(y)

|z − y|2(1−s) dy + C ≤ cs
∫
S\B((1,0),Λε)

ωλ(y)

|z − y|2(1−s) dy +
Cs

(Rε)2(1−s) + C.
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A rearrangement argument then provides the upper estimate

Ksωλ(z) ≤ cs
sε2(1−s)M(ωλ, S \ B((1, 0),Λε))s +

cs
(Λε)2(1−s) + C. (71)

With these estimates at hand, we now assume for the sake of a contradiction the existence of
a point x ∈ S \

(
B((1, 0), 2Λε) ∪B

)
such that ψλ(x) ≥ 0. Recall here that

B =
{

(r, θ) ∈ S :
1

2
≤ r ≤ 1

2
+

1

8
or 2− 1

8
≤ r ≤ 2

}
. (72)

When ε is small enough, we can �nd a point y1 ∈ S such that ψλ(y1) ≤ 0, and which satis�es the
two conditions

sign(α) = sign
(
|y1|2 − |x|2

)
and

∣∣|y1|2 − |x|2
∣∣ ≥ 1

10
. (73)

Such a point necessarily exists due to the constraints M(ωλ) = L(ωλ) = 1, the vorticity concentra-
tion provided by Lemma 8 and the fact that x ∈ S \B. Combining the inequalities (69) and (73)
with the estimate (71) leads to the bound

|α|
20
≤ cs
sε2(1−s)M(ωλ, S \ B((1, 0),Λε))s +

cs
(Λε)2(1−s) + C. (74)

Consider now a further positive number Λ1, as well as a point y2 ∈ B((1, 0),Λ1ε) such that
ψλ(y2) ≤ 0. Provided that Λ1 > 1, the existence of this point follows from the property that the
support of the vorticity has measure πε2. In view of (70) and (71), we can estimate (69) so as to
obtain

cs
(2Λ1ε)2(1−s)M(ωλ,B((1, 0),Λ1ε)) ≤

cs
sε2(1−s)M(ωλ, S \ B((1, 0),Λε))s +

cs
(Λε)2(1−s) + 4|α|+ C.

Hence, we deduce from (74) that

1

(2Λ1)2(1−s)M(ωλ,B((1, 0),Λ1ε)) ≤ C
(
M(ωλ,B((1, 0), S \ Λε))s +

1

Λ2(1−s) + ε2(1−s)
)
.

We �nally invoke the decay estimate provided by Lemma 8 in order to get

1

(2Λ1)2(1−s)

(
1− 1

Λγs1

)
≤ C

( 1

Λsγs
+

1

Λ2(1−s) + ε2(1−s)
)
.

For ε small enough, this inequality is false for a �xed number Λ1, when Λ is chosen large enough.
This contradiction concludes the proof of Lemma 9.

3.11 Proof of Proposition 2

We argue by contradiction. We assume that the function ωλ does not identically vanish on the
set B and we derive a contradiction with the property that it is a solution of the maximization
problem (Pλ). More precisely, our main argument lies in constructing a function ωλ,2 ∈ Xλ, with

M(ωλ,2) = L(ωλ,2) = 1,

and such that
Es(ωλ,2) > Es(ωλ).

This construction is performed in two steps. The �rst step provides a function ωλ,1, which satis�es
all the previous criteria except the constraint L(ωλ,2) = 1. This constraint is recovered in a second
step without losing too much energy.

Step 1. We assume for the sake of a contradiction that M(ωλ, B) > 0. The construction of the
function ωλ,1 then relies on Lemma 9, which guarantees that the function ωλ identically vanishes
on the subset S \ (B((1, 0),Λε) ∪ B). The idea underlying the construction is to rearrange the
function ωλ so that the positive mass M(ωλ, B) localized in B is brought back into a small disk
nearby B((1, 0),Λε).
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Observe �rst that the localized mass M(ωλ, B) can be estimated as

M(ωλ, B) ≤ Cεγs , (75)

by Lemma 8. In particular, this quantity vanishes in the limit ε→ 0. Setting

ρ1 =
√
M(ωλ, B) and x1 = 1 + Λε+ ρ1ε, (76)

we check that the ball B(x1, ρ1ε) lies in the subset S \ (B((1, 0),Λε) ∪B) for ε small enough, and
that its intersection with the ball B((1, 0),Λε) reduces to the point (1 + Λε, 0).

With these properties at hand, we can de�ne the restriction of the function ωλ,1 to the angular
sector SN as

ωλ,1 = ωλ1B((1,0),Λε) + λ1B(x1,ρ1ε).

We next extend this de�nition to the whole space using the N -fold symmetry. In view of this
de�nition, the function ωλ,1 belongs to the function set Xλ. Moreover, it is angular Steiner sym-
metric due to the angular Steiner symmetry of the function ωλ, and it satis�es the condition
M(ωλ,1) = M(ωλ) = 1.

We now estimate how the energy of the function ωλ has been modi�ed by this construction.
Recall �rst that the function ωλ,1 is equal to the function ωλ on the ball B((1, 0),Λε), so that

Is
(
ωλ,1,B((1, 0),Λε),B((1, 0),Λε)

)
= Is

(
ωλ,B((1, 0),Λε),B((1, 0),Λε)

)
. (77)

We next invoke the Riesz rearrangement inequality [20] in order to obtain

Is
(
ωλ, S \ B((1, 0),Λε), S \ B((1, 0),Λε)

)
≤ Is

(
ωλ,1, S \ B((1, 0),Λε), S \ B((1, 0),Λε)

)
. (78)

We also check that

dist
(
supp(ωλ1S), supp(ωλ1R2\S)

)
= sin

( π
N

)
≥ 1

2N
, (79)

which gives ∣∣Is(ωλ, S,R2 \ S)− Is(ωλ,1, S,R2 \ S)
∣∣ ≤ Cε2(1−s)M(ωλ, B). (80)

Finally, we turn to the last di�erence, namely Is
(
ωλ,1,B((1, 0),Λε), S \ B((1, 0),Λε)

)
− Is

(
ωλ,

B((1, 0),Λε), S \ B((1, 0),Λε)
)
. We observe that

dist
(
B((1, 0),Λε), B

)
≥ 1

4
,

when ε is small enough. Since the function ωλ identically vanishes on S \ (B((1, 0),Λε) ∪ B), it
follows that

Is
(
ωλ,B((1, 0),Λε), S \ B((1, 0),Λε)

)
≤ Cε2(1−s)M(ωλ, B). (81)

On the other hand, we check that

max
x∈B(x1,ρ1)

max
y∈B((1,0),Λε)

|x− y| = 2ε
(
Λ + ρ1),

and this inequality gives

Is
(
ωλ,1,B((1, 0),Λε),S \ B((1, 0),Λε)

)
≥ cs

(
2Λ + 2ρ1

)2(s−1)
M
(
ωλ,1, S \ B((1, 0),Λε)

)
M
(
ωλ,1,B((1, 0),Λε)

)
.

In view of the decay estimate in Lemma 8, we know that

M
(
ωλ,1,B((1, 0),Λε)

)
≥ 1

2
,

for ε small enough, while M
(
ωλ,1, S \ B((1, 0),Λε)

)
= M(ωλ, B). As a consequence, we are led to

the lower bound
Is
(
ωλ,1,B((1, 0),Λε), S \ B((1, 0),Λε)

)
≥ CM(ωλ, B), (82)
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and we can collect the energy estimates from (77) to (82) in order to write

Es(ωλ,1)− Es(ωλ) =
N

2ε2(1−s)

(
Is(ωλ,1, S,R2)− Is(ωλ, S,R2)

)
≥ C

( 1

ε2(1−s) − 1
)
M(ωλ, B). (83)

However, the function ωλ,1 may not satisfy the constraint L(ωλ,1) = 1, so that we cannot consider
it as a test function for the maximization problem (Pλ).

Step 2. We recover this property by a suitable translation of the restriction to the set S of the
function ωλ,1. Consider the second order algebraic equation

r2
0 +

(
2

∫
S

x1ωλ,1(x) dx

)
r0 +

∫
S

|x|2ωλ,1(x) dx− 1 = 0. (84)

Going back to the de�nition of the function ωλ,1, we observe that the support of its restriction to
S is included into the ball B((1, 0), (Λ + 2ρ1)ε). In view of (75) and (76), we deduce that∫

S

x1ωλ,1(x) dx =
(
1 +O(ε)

) ∫
S

ωλ,1 = 1 +O(ε),

in the limit ε→ 0. Similarly, we have∫
S

|x|2ωλ,1(x) dx = 1 +O(ε),

as ε→ 0. As a consequence, the discriminant

∆ = 4
(∫

S

x1ωλ,1(x) dx
)2

− 4

∫
S

|x|2ωλ,1(x) dx+ 4

of (84) is positive for ε small enough, and we are authorized to set

r0 = −
∫
S

x1ωλ,1(x) dx+

((∫
S

x1ωλ,1(x) dx
)2

−
∫
S

|x|2ωλ,1(x) dx+ 1

) 1
2

. (85)

Using the inequality |
√
v−
√
u| ≤ |v− u| for u ≥ 1/4 and v ≥ 1/4, we can estimate the number r0

by
|r0| ≤

∣∣L(ωλ,1)− 1
∣∣, (86)

for ε small enough. Invoking once again the de�nition of the function ωλ,1, we can combine the
property that 1/2 ≤ |x| ≤ 2 for x ∈ S with inequality (75) in order to estimate the quantity
L(ωλ,1) as ∣∣L(ωλ,1)− 1

∣∣ =
∣∣L(ωλ,1)− L(ωλ)

∣∣ ≤ 4M(ωλ, B) ≤ Cεγs . (87)

Hence we obtain the estimate
|r0| ≤ Cεγs . (88)

At this stage, we set
∀x ∈ SN , ωλ,2(x) = ωλ,1

(
x− (r0, 0)

)
. (89)

Since the support of the restriction of ωλ,1 to S is included into the ball B((1, 0), (Λ + 2ρ1)ε),
estimate (88) is enough to guarantee that the function ωλ,2 has a compact support in S when ε
is small enough. In particular, we can extend this function to R2 by using the N -fold symmetry,
and this extension amounts to translate the restriction of the function ωλ,1 to each angular sector
R(2nπ)/NSN by the vector yn = R(2nπ)/N (r0, 0). In particular, we can check that the function ωλ,2
belongs to the set Xλ. By construction, it is also angular Steiner symmetric and it satis�es the
constraint M(ωλ,2) = 1. On the other hand, we compute

L(ωλ,2) =

∫
S

|x+ (r0, 0)|2ωλ,1(x) dx = r2
0 + 2r0

∫
S

x1ωλ,1(x) dx+

∫
S

|x|2ωλ,1(x) dx,

using the property that M(ωλ,1) = 1. Since the number r0 is a root of (84), we infer that
L(ωλ,2) = 1.
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We �nally estimate the energy of the function ωλ,2. Since this function is constructed by
translating the function ωλ,1 in S, we �rst have

Is(ωλ,2, S, S) = Is(ωλ,1, S, S). (90)

Similarly, we also derive from the de�nition of the function ωλ,1 that

Is(ωλ,2,S,R2 \ S)− Is(ωλ,1, S,R2 \ S)

=

N−1∑
n=1

∫
S

∫
R 2nπ

N
S

(( ε

|x− x′ + y0 − yn|

)2(1−s)
−
( ε

|x− x′|

)2(1−s)
)
ωλ,1(x′) dx′ωλ,1(x) dx.

Coming back to (79), we infer that

Is(ωλ,2, S,R2 \ S)− Is(ωλ,1, S,R2 \ S) ≥ −Cε2(1−s)
N−1∑
n=1

∣∣y0 − yn
∣∣.

Since |yn| = r0 for any 0 ≤ n ≤ N − 1, we deduce from (86) and (87) that

Is(ωλ,2, S,R2 \ S) ≥ Is(ωλ,1, S,R2 \ S)− Cε2(1−s)M(ωλ, B).

Combining this estimate with (83) and (90) leads to the inequality

Es(ωλ,2)−Es(ωλ) =
N

2ε2(1−s)

(
Is(ωλ,2,R2,R2)−Is(ωλ,R2,R2)

)
≥ C

( 1

ε2(1−s) −1
)
M(ωλ, B). (91)

This inequality contradicts the maximality of the function ωλ in the limit ε → 0. This concludes
the proof of Proposition 2.

A The angular Steiner symmetrization

Our previous construction of co-rotating vortices with N -fold symmetry relies several times on a
reduction on each fold to angular Steiner symmetric functions. This reduction is made possible by
the fact that the restriction to each fold of these co-rotating vortices are indeed angular Steiner
symmetric. In this appendix, we collect the properties of this symmetrization, which we have used
for our construction, and we give their proofs.

To have this appendix self contained, we recall here after the de�nitions we need. Consider a
non-negative measurable function ω de�ned on the angular sector

SN :=
{
x =

(
r cos(θ), r sin(θ)

)
∈ R2 : − π

N
< θ <

π

N

}
.

Its angular Steiner symmetrization ω] is de�ned as the unique even function for the variable θ such
that

ω](r, θ) > ν if and only if |θ| < 1

2
meas

{
θ′ ∈

(
− π

N
,
π

N

)
: ω(r, θ′) > ν

}
,

for any positive numbers r and ν, and any angle −π/N < θ < π/N . This function is well-de�ned
and measurable on SN . Moreover, the function ω is said to be angular Steiner symmetric if and
only if ω] = ω almost everywhere. In view of its de�nition, the angular Steiner symmetrization
satis�es

meas
{
θ ∈

(
− π

N
,
π

N

)
: ω](r, θ) > ν

}
= meas

{
θ ∈

(
− π

N
,
π

N

)
: ω(r, θ) > ν

}
,

for any positive numbers r and ν, which means that it is a rearrangement with respect to the
angular variable θ. As a consequence of the layer-cake representation of non-negative measurable
functions, the angular Steiner symmetrization maps the set

Lp+(SN ) :=
{
ω ∈ Lp(SN ) s.t. ω ≥ 0 a.e.

}
,

into itself. This rearrangement preserves several integral quantities as stated in the next lemma.
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Lemma 10. Let ω ∈ L1
loc,+(SN ) and let f : R+ → R+ continuous. We have∫
SN

f(r)ω(r, θ) r dr dθ =

∫
SN

f(r)ω](r, θ) r dr dθ,

provided that these quantities are �nite.

Proof. This is a direct consequence of the layer-cake formula

ω(r, θ) =

∫ +∞

0

1{ω(r,·)>ν}(θ) dν,

the Fubini theorem and the de�nition of the angular Steiner symmetrization.

In contrast, the energy E is not conserved by the angular Steiner symmetrization, but it
is increased by this transformation. The proof of this claim relies on the Riesz rearrangement
inequality for the angular Steiner symmetrization.

Lemma 11. Let ω ∈ L∞+ (S). We have

E(ω) ≤ E(ω]).

Proof. Recall �rst that the quantity E(ω) is de�ned by

E(ω) =

∫ 2

1
2

r dr

∫ 2

1
2

r′ dr′
(∫ π

2N

− π
2N

∫ π
2N

− π
2N

κ(r, r′, θ − θ′)ω(r, θ)ω(r′, θ′) dθ dθ′
)
. (92)

In this expression, the kernel κ is equal to

κ(r, r′, ξ) =

N−1∑
n=0

Ncs(
r2 + (r′)2 − 2rr′ cos

(
ξ − 2πn

N

))1−s ,
for 1

2 < r 6= r′ < 2 and −π/N < ξ < π/N . This function is non-negative and even with respect to
the variable ξ due to the identity

cos
(
− ξ − 2πn

N

)
= cos

(
ξ − 2π(N − n)

N

)
,

which holds for −π/N < ξ < π/N and 1 ≤ n ≤ N − 1.
Moreover, given two �xed numbers 1

2 < r 6= r′ < 2, the map ξ 7→ κ(r, r′, ξ) is smooth on
(−π/N, π/N), and its derivative is given by

∂κ

∂ξ
(r, r′, ξ) = −2cs(1− s)rr′

N−1∑
n=0

sin
(
ξ − 2πn

N

)(
r2 + (r′)2 − 2rr′ cos

(
ξ − 2πn

N

))2−s .
We claim that this quantity is negative on (0, π/N), while it is positive on (−π/N, 0). More
precisely, we have

Lemma 12. Let N ≥ 2, 0 ≤ s ≤ 1 and 0 < % < 1. Consider the function φ : [−1, 1]→ R de�ned
by

φ(x) :=
1

(1− %x)2−s , (93)

for any number −1 ≤ x ≤ 1, and set

Φ(ξ) =

N−1∑
n=0

sin
(
ξ − 2πn

N

)
φ
(

cos
(
ξ − 2πn

N

))
,

for any number ξ ∈ R. There exists a continuous, positive and 2π/N -periodic function F : R→ R
such that

Φ(ξ) = sin(Nξ)F (ξ), (94)

for any number ξ ∈ R.
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Our previous claim directly follows from applying formula (94) with % = 2rr′/(r2 + (r′)2) ∈
(0, 1). For sake of clarity, we postpone the proof of Lemma 12 and now complete the proof of
Lemma 11.

Coming back to (92), we �x two positive numbers r 6= r′ and extend the functions θ 7→ ω(r, θ)
and θ 7→ ω(r′, θ) to R by letting them equal to 0 outside the interval (−π/2N, π/2N). Similarly,
we extend the map θ 7→ κ(r, r′, θ) to R by letting it equal to 0 outside the interval (−π/N, π/N).
We then have∫ π

2N

− π
2N

∫ π
2N

− π
2N

κ(r, r′, θ − θ′)ω(r, θ)ω(r′, θ′) dθ dθ′ =

∫
R

∫
R
κ(r, r′, θ − θ′)ω(r, θ)ω(r′, θ′) dθ dθ′,

and we can apply the Riesz rearrangement inequality (see e.g. [16, Lemma 3.6]) in order to obtain∫ π
2N

− π
2N

∫ π
2N

− π
2N

κ(r, r′, θ − θ′)ω(r, θ)ω(r′, θ′) dθ dθ′ ≤
∫
R

∫
R
κ](r, r′, θ − θ′)ω](r, θ)ω](r′, θ′) dθ dθ′.

Since the map ξ 7→ κ(r, r′, ξ) is even and non-increasing on R+, we have

κ](r, r′, θ − θ′) = κ(r, r′, θ − θ′),

for any (θ, θ′) ∈ R2. Moreover, since the functions θ 7→ ω(r, θ) and θ 7→ ω(r′, θ) are supported in
(−π/2N, π/2N), so are the functions θ 7→ ω](r, θ) and θ 7→ ω](r′, θ), and this property leads to∫ π

2N

− π
2N

∫ π
2N

− π
2N

κ(r, r′, θ− θ′)ω(r, θ)ω(r′, θ′) dθ dθ′ ≤
∫ π

2N

− π
2N

∫ π
2N

− π
2N

κ(r, r′, θ− θ′)ω](r, θ)ω](r′, θ′) dθ dθ′.

Lemma 11 �nally follows from introducing this inequality into (92).

We now provide the proof of Lemma 12.

Proof of Lemma 12. For sake of simplicity, we set

ξn = ξ − 2πn

N
,

for any number ξ ∈ R and any integer 0 ≤ n ≤ N − 1. With this notation at hand, the function Φ
rewrites as

Φ(ξ) =

N−1∑
n=0

sin(ξn)φ
(

cos(ξn)
)
,

and we can express it as in (94) by developing the following inductive argument.
The �rst step, as the subsequent ones, relies on a Taylor expansion of the function φ. We de�ne

the maps

Tp[f ](x) :=

∫ 1

0

f (p)(sx)(1− s)p−1 ds

for any integer p ≥ 1, any number −1 ≤ x ≤ 1 and any function f ∈ C∞([−1, 1]). These maps
allow to write the remainder term in the Taylor formula as

f(x) =

p−1∑
k=0

f (k)(0)

k!
xk +

xp

(p− 1)!
Tp[f ](x).

Since the function φ is smooth on R, we infer from this formula that

Φ(ξ) =

N−2∑
k=0

φ(k)(0)

k!

N−1∑
n=0

sin(ξn) cos(ξn)k

+
1

(N − 2)!

N−1∑
n=0

sin(ξn) cos(ξn)N−1TN−1[φ](cos(ξn)).

(95)
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We next claim that the trigonometric sums
∑N−1
n=0 sin(ξn) cos(ξn)k are equal to 0 when 0 ≤ k ≤

N − 2. For further use, we more generally set

σk,`(ξ) :=

N−1∑
n=0

sin(`ξn) cos(ξn)k, (96)

for any integer (k, `) ∈ N2, and we check that

σk,`(ξ) = 0, (97)

provided that 0 ≤ k+` ≤ N−1. Indeed, the Euler formula for the cosine function and the binomial
theorem give

σk,`(ξ) =
1

2k

N−1∑
n=0

sin(`ξn)

k∑
j=0

(
k

j

)
ei(k−2j)ξn .

Since the sum σk,`(ξ) is real-valued, this expression reduces to

σk,`(ξ) =
1

2k

k∑
j=0

(
k

j

)N−1∑
n=0

sin(`ξn) cos
(
(k − 2j)ξn

)
,

so that

σk,`(ξ) =
1

2k+1

k∑
j=0

(
k

j

)N−1∑
n=0

(
sin
(
(k + `− 2j)ξn

)
+ sin

(
(2j + `− k)ξn

))
. (98)

We rewrite this formula as

σk,`(ξ) =
1

2k+1

k∑
j=0

(
k

j

)
=
(
ei(k+`−2j)ξ

N−1∑
n=0

(
e

2πi(2j−k−`)
N

)n
+ei(2j+`−k)ξ

N−1∑
n=0

(
e

2πi(k−`−2j)
N

)n)
. (99)

Recall that
N−1∑
n=0

(
e

2pπi
N

)n
=

{
N if p is a multiple of N,

0 elsewhere,

and observe that the integers 2j − ` − k and k − ` − 2j lie in the interval [−(N − 1), N − 1] due
to the constraints 0 ≤ k + ` ≤ N − 1 and 0 ≤ j ≤ k. As a consequence, the sums with respect to
n in (99) are equal to 0 except if 2j − ` − k = 0 for the �rst sum, respectively k − ` − 2j = 0 for
the second one. In these two cases, the quantity in the imaginary part is real-valued, so that the
quantity σk,`(ξ) is indeed equal to 0.

Invoking (97) with 0 ≤ k ≤ N − 2 and ` = 1, we can simplify (95) as

Φ(ξ) =
1

(N − 2)!

N−1∑
n=0

sin(ξn) cos(ξn)N−1TN−1[φ](cos(ξn)), (100)

and put the focus on the trigonometric polynomial ξ 7→ sin(ξ) cos(ξ)N−1. As before, we more
generally consider the functions ξ 7→ sin(`ξ) cos(ξ)N−` for an integer 1 ≤ ` ≤ N − 1. Arguing as
for the proof of (98) and using the identity sin(Nξn) = sin(Nξ) for 0 ≤ n ≤ N − 1, we observe
that

sin(`ξn) cos(ξn)N−` =
1

2N−`

(
sin(Nξ) +

N−∑̀
k=1

(
N − `
k

)
sin
(
(N − 2k)ξn

))
. (101)

In this expression, the quantities sin
(
(N−2k)ξn

)
can appear only once, with a positive multiplica-

tive factor, or twice, with opposite multiplicative factors. For further use, we aim at eliminating
this late behavior. For 2` ≥ N , this behavior is excluded, so that we now assume that 2` < N . In
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this case, we use the change of indices j = N − k for N/2 < k ≤ N − ` in order to decompose the
sum over k in (101) as

N−∑̀
k=1

(
N − `
k

)
sin
(
(N − 2k)ξn

)
=
∑

1≤k<`

(
N − `
k

)
sin
(
(N − 2k)ξn

)
+

∑
`≤k<N

2

((N − `
k

)
−
(
N − `
N − k

))
sin
(
(N − 2k)ξn

)
.

(102)

Note here that(
N − `
k

)
−
(
N − `
N − k

)
=

(N − `)!
k!(N − k)!

( `−1∏
j=0

(N − k − j)−
`−1∏
j=0

(k − j)
)
> 0, (103)

since N − k > k when ` ≤ k < N/2. Hence, rewriting (101) as in (102) provides an expression in
which each quantity sin

(
(N − 2k)ξn

)
appears only once, with a positive multiplicative factor.

Going back to (100), we can combine (101) and (102) for ` = 1 in order to obtain

Φ(ξ) =
sin(Nξ)

2N−1(N − 2)!

N−1∑
n=0

TN−1[φ](cos(ξn))

+
1

2N−1(N − 2)!

∑
1≤k<N

2

((
N − 1

k

)
−
(
N − 1

N − k

))N−1∑
n=0

sin
(
(N − 2k)ξn

)
TN−1[φ](cos(ξn)).

(104)

At this stage, we set

F 1(ξ) :=
1

2N−1(N − 2)!

N−1∑
n=0

TN−1[φ](cos(ξn)), (105)

and

R1
N−2k(x) =

1

2N−1(N − 2)!

((
N − 1

k

)
−
(
N − 1

N − k

))
TN−1[φ](x), (106)

for 1 ≤ k < N/2 and −1 ≤ x ≤ 1. With this notation at hand, we can write (104) as

Φ(ξ) = sin(Nξ)F 1(ξ) +
∑

1≤k<N
2

N−1∑
n=0

sin
(
(N − 2k)ξn

)
R1
N−2k(cos(ξn)), (107)

and we observe that the sums

N−1∑
n=0

sin
(
(N − 2k)ξn

)
R1
N−2k(cos(ξn))

have exactly the same form as the map Φ with the function φ being replaced by the functions
R1
N−2k. As a consequence, we can expect that an inductive argument eventually provides an

expression of the map Φ as in (94).
Before going into this inductive argument, we now check that the function F 1 is positive, while

the remainder terms R1
N−2k are positive and absolutely monotone, which means that all their

derivatives are positive. This claim originates into the two following properties.
First, in view of (93), the function φ is well-de�ned and smooth on [−1, 1] ⊂ (−1/%, 1/%), and

its successive derivatives are given by

φ(p)(x) =
(2− s)(3− s) . . . (p+ 1− s)%p

(1− %x)p+2−s > 0,
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for any p ≥ 1 and any x ∈ [−1, 1]. Therefore, the function φ is absolutely monotone. Actually,
it extends to an analytic function on the interval (−1/%, 1/%) since it can be expanded as the
power series Let R > 0 We next assume for the sake of a contradiction the existence of a point
x ∈ B((1, 0), 2Rε)c such that ψλ(x) ≥ 0. When ε is small enough, we can invoke Lemma 8 in order
to �nd y1 ∈ S such that ψλ(y1) < 0 and the two following conditions are satis�ed

φ(x) =

+∞∑
p=0

αp,sρ
pxp, (108)

for x ∈ (−1/%, 1/%). In this formula, the coe�cients αp,s are given by

α0,s := 1 and αp,s :=
(2− s)(3− s) . . . (p+ 1− s)

p!
for p ≥ 1, (109)

and all of them are positive.
Second, we remark that, if a function f ∈ C∞([−1, 1],R) is positive and absolutely monotone,

so are the maps Tp[f ] for any p ≥ 1. This is a direct consequence of the computation

Tp[f ](q)(x) =

∫ 1

0

f (p+q)(sx)sq(1− s)p−1 ds > 0.

Hence, we can invoke (103), (105) and (106) to conclude that the function F 1 is positive, while the
remainder terms R1

N−2k are positive and absolutely monotone.
We now go inside the inductive argument. Given an integer p ≥ 1, we assume that we have

constructed positive and smooth functions (F q)1≤q≤p on R, and positive, smooth and absolutely
monotone functions (RqN−2k)1≤q≤p,1≤k<N/2 on [−1, 1], such that

Φ(ξ) = sin(Nξ)

p∑
q=1

F q(ξ) +
∑

1≤k<N
2

N−1∑
n=0

sin
(
(N − 2k)ξn

)
RpN−2k(cos(ξn)), (110)

for any ξ ∈ R. In order to construct the function F p+1 and the remainders Rp+1
N−2k, we apply the

same strategy as in the �rst inductive argument above. We �x an integer 1 ≤ k < N/2 and we
invoke the Taylor formula so as to obtain

N−1∑
n=0

sin
(
(N − 2k)ξn

)
RpN−2k(cos(ξn)) =

2k−1∑
j=0

(
RpN−2k

)(j)
(0)

j!

N−1∑
n=0

sin
(
(N − 2k)ξn

)
cos(ξn)j

+
1

(2k − 1)!

N−1∑
n=0

sin
(
(N − 2k)ξn

)
cos(ξn)2kT2k[RpN−2k](cos(ξn)).

In view of (97), the double sum in the right-hand side of this identity is equal to 0, so that

N−1∑
n=0

sin
(
(N − 2k)ξn

)
RpN−2k(cos(ξn)) =

1

(2k − 1)!

N−1∑
n=0

sin
(
(N − 2k)ξn

)
cos(ξn)2kT2k[RpN−2k](cos(ξn)).

When k ≤ N/4, we next use (101) in order to get

N−1∑
n=0

sin
(
(N − 2k)ξn

)
RpN−2k(cos(ξn)) =

sin(Nξ)

4k(2k − 1)!

N−1∑
n=0

T2k[RpN−2k](cos(ξn))

+
1

4k(2k − 1)!

2k∑
j=1

(
2k

j

)N−1∑
n=0

sin
(
(N − 2j)ξn

)
T2k[RpN−2k](cos(ξn)).

(111)
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For k > N/4, we similarly invoke (102) so as to obtain

N−1∑
n=0

sin
(
(N − 2k)ξn

)
RpN−2k(cos(ξn)) =

sin(Nξ)

4k(2k − 1)!

N−1∑
n=0

T2k[RpN−2k](cos(ξn))

+
1

4k(2k − 1)!

∑
1≤j<N−2k

(
2k

j

)N−1∑
n=0

sin
(
(N − 2j)ξn

)
T2k[RpN−2k](cos(ξn))

+
1

4k(2k − 1)!

∑
N−2k≤j<N

2

((
2k

j

)
−
(

2k

N − j

))N−1∑
n=0

sin
(
(N − 2j)ξn

)
T2k[RpN−2k](cos(ξn)).

Setting

F p+1(ξ) :=
∑

1≤k<N
2

1

4k(2k − 1)!

N−1∑
n=0

T2k[RpN−2k](cos(ξn)), (112)

as well as

Rp+1
N−2k(x) =

∑
max

{
1, k2

}
≤j<N−k

2

(
2j

k

)
T2j [R

p
N−2j ](x)

4j(2j − 1)!

+
∑

N−k
2 ≤j<

N
2

((
2j

k

)
−
(

2j

N − k

))
T2j [R

p
N−2j ](x)

4j(2j − 1)!
,

(113)

we conclude that

Φ(ξ) = sin(Nξ)

p+1∑
q=1

F q(ξ) +
∑

1≤k<N
2

N−1∑
n=0

sin
(
(N − 2k)ξn

)
Rp+1
N−2k(cos(ξn)).

Moreover, we can prove as for the functions F 1 and R1
N−2k that the map F p+1 is positive and

smooth on R, while the maps Rp+1
N−2k are positive, smooth and absolutely monotone on [−1, 1].

This completes the inductive argument and establishes the validity of (110) for any p ≥ 1.
We �nally conclude the proof of Lemma 12 by showing that∑

1≤k<N/2

∣∣RpN−2k(x)
∣∣→ 0, (114)

as p → +∞, uniformly with respect to x ∈ [−1, 1]. In order to establish this convergence, we use
the analytic expansion of the function φ in (108). More generally, we consider an analytic function
f on the interval (−1/%, 1/%), which we expand as the power series

f(x) =

+∞∑
k=0

akx
k,

for x ∈ (−1/%, 1/%). Given an integer m ≥ 1 and a number x ∈ [−1, 1], we compute

Tm[f ](x) =

+∞∑
k=0

ak+m(k +m) . . . (k + 1)xk
∫ 1

0

sk(1− s)m−1 ds.

Integrating by parts and arguing by induction provide∫ 1

0

sk(1− s)m−1 ds =
m− 1

k + 1

∫ 1

0

sk+1(1− s)m−2 ds =
(m− 1)!

(k +m) . . . (k + 1)
.

Hence we obtain
Tm[f ](x) = (m− 1)! τmf(x),
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where the notation τmf refers to the analytic function f given by the power series

τmf(x) =

+∞∑
k=0

ak+mx
k,

for any number x ∈ (−1/%, 1/%).
With this expression at hand, we rewrite (113) as

Rp+1
N−2k(x) =

∑
k
2≤j<

N
2

b2jk τ2jR
p
N−2j(x),

with

bjk =


(
j
k

)
1
2j if k ≤ j < N − k,((
j
k

)
−
(

j
N−k

))
1
2j if N − k ≤ j < N.

Since
R1
N−2k(x) = bN−1

k τN−1φ(x),

by (106), a direct inductive argument provides

Rp+1
N−2k(x) =

∑
max

{
1, k2

}
≤j1<N

2

b2j1k

∑
max

{
1,
j1
2

}
≤j2<N

2

b2j2j1
. . .

. . .
∑

max
{

1,
jp−1

2

}
≤jp<N

2

b
2jp
jp−1

bN−1
jp

τ2j1+2j2...2jp+N−1φ(x).
(115)

In view of (108), we know that

τmφ(x) =

+∞∑
k=0

αk+m,sρ
k+mxk.

Moreover, the radius of convergence of the power series
∑
k≥0 αk,sx

k is equal to 1. Therefore, given
any number 0 < σ < 1, there exists a positive number Mσ such that

αk,sσ
k ≤Mσ,

for any integer k ∈ N. When τ < σ < 1 and −1 ≤ x ≤ 1, we are led to the estimate

∣∣τmφ(x)
∣∣ ≤Mσ

τm

σm

+∞∑
k=0

ρk

σk
=

Mσρ
m

σm−1(σ − ρ)
.

Inserting this inequality into (115) gives∣∣Rp+1
N−2k(x)

∣∣ ≤ Mσσ

σ − ρ
∑

max
{

1, k2

}
≤j1<N

2

b2j1k

∑
max

{
1,
j1
2

}
≤j2<N

2

b2j2j1
. . .

. . .
∑

max
{

1,
jp−1

2

}
≤jp<N

2

b
2jp
jp−1

bN−1
jp

(
ρ

σ

)2j1+2j2...2jp+N−1

.

Hence, we deduce from the inequality ρ < σ that

∣∣Rp+1
N−2k(x)

∣∣ ≤ Mσσ

σ − ρ

(
ρ

σ

)2p+N−1

×

×
∑

max
{

1, k2

}
≤j1<N

2

b2j1k

∑
max

{
1,
j1
2

}
≤j2<N

2

b2j2j1
. . .

∑
max

{
1,
jp−1

2

}
≤jp<N

2

b
2jp
jp−1

bN−1
jp

.
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At this stage, we deduce from the discrete Fubini theorem∑
1≤k≤N2

∑
max

{
1, k2

}
≤j<N

2

b2jk αj ≤
∑

1≤k≤N2

∑
max

{
1, k2

}
≤j<N

2

(
2j

k

)
αj
22j

≤
∑

1≤j≤N2

∑
1≤k≤2j

(
2j

k

)
αj
22j

=
∑

1≤j≤N2

αj ,

for any non-negative numbers α1, α2, . . . and αj . In view of (116), this yields

∑
1≤k<N

2

∣∣Rp+1
N−2k(x)

∣∣ ≤ Mσσ

σ − ρ

(
ρ

σ

)2p+N−1 ∑
1≤j<N

2

bN−1
j .

Since ∑
1≤j<N

2

bN−1
j ≤ 1

2N−1

N−1∑
j=1

(
N − 1

j

)
≤ 1,

we conclude that ∑
1≤k<N

2

∣∣Rp+1
N−2k(x)

∣∣ ≤ Mσσ

σ − ρ

(
ρ

σ

)2p+N−1

,

which is enough to obtain the uniform convergence in (114).
Applying this convergence to (110) leads to the identity

Φ(ξ) = sin(Nξ)F (ξ),

for any number ξ ∈ R. The map F in this formula is de�ned as the function series

F (ξ) =

+∞∑
q=1

F q(ξ).

Since the convergence of this series is uniform on R, and all the functions F q are continuous and
positive, so is the map F . Its 2π/N -periodicity then follows from its continuity and the 2π/N -
periodicity of the functions Φ and ξ 7→ sin(Nξ). This completes the proof of Lemma 12.
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