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Abstract

We pursue our work [5] on the dynamical stability of dark solitons for the one-dimensional
Gross-Pitaevskii equation. In this paper, we prove their asymptotic stability under small
perturbations in the energy space. In particular, our results do not require smallness in some
weighted spaces or a priori spectral assumptions. Our strategy is reminiscent of the one used
by Martel and Merle in various works regarding generalized Korteweg-de Vries equations.
The important feature of our contribution is related to the fact that while Korteweg-de Vries
equations possess unidirectional dispersion, Schrödinger equations do not.

Résumé

Nous poursuivons notre analyse [5] de la stabilité dynamique des solitons sombres pour
l'équation de Gross-Pitaevskii en dimension un. Dans cet article, nous démontrons leur
stabilité asymptotique par rapport à de petites perturbations dans l'espace d'énergie. En
particulier, nos résultats ne requièrent aucune condition de petitesse dans des espaces à
poids, aussi bien qu'aucune hypothèse spectrale a priori. Notre stratégie s'appuie sur celle
développée par Martel et Merle dans plusieurs articles au sujet des équations de Korteweg-
de Vries généralisées. Notre contribution principale réside dans le fait que les équations de
Korteweg-de Vries possèdent une dispersion unidirectionnelle, ce qui n'est plus le cas des
équations de Schrödinger.

1 Introduction

We consider the one-dimensional Gross-Pitaevskii equation

i∂tΨ+ ∂xxΨ+Ψ
(
1− |Ψ|2

)
= 0, (GP)

for a function Ψ : R× R → C, supplemented with the boundary condition at in�nity

|Ψ(x, t)| → 1, as |x| → +∞. (1)

The three-dimensional version of (GP) was introduced in the context of Bose-Einstein conden-
sation in [37, 24]. It is also used as a model in other areas of physics such as nonlinear optics [25]
and quantum �uid mechanics [14]. In nonlinear optics, the Gross-Pitaevskii equation appears
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as an envelope equation in optical �bers, and is mostly relevant in the one and two dimensional
cases. In dimension one, the case studied in this paper, it models the propagation of dark pulses
in slab waveguides, and the boundary condition (1) corresponds to a non-zero background.

On a mathematical level, the Gross-Pitaevskii equation is a defocusing nonlinear Schrödinger
equation. It is Hamiltonian, and in dimension one, it owns the remarkable property to be
integrable by means of the inverse scattering method [42]. The Hamiltonian is given by the
Ginzburg-Landau energy

E(Ψ) :=
1

2

∫
R
|∂xΨ|2 + 1

4

∫
R
(1− |Ψ|2)2.

A soliton with speed c is a travelling-wave solution of (GP) of the form

Ψ(x, t) := Uc(x− ct).

Its pro�le Uc is a solution to the ordinary di�erential equation

− ic∂xUc + ∂xxUc + Uc

(
1− |Uc|2

)
= 0. (2)

The solutions to (2) with �nite Ginzburg-Landau energy are explicitly known. For |c| ≥
√
2,

they are the constant functions of unitary modulus, while for |c| <
√
2, up to the invariances of

the problem, i.e. multiplication by a constant of modulus one and translation, they are uniquely
given by the expression

Uc(x) :=

√
2− c2

2
tanh

(√2− c2x

2

)
+ i

c√
2
. (3)

Notice that solitons Uc with speed c ̸= 0 do not vanish on R. They are called dark solitons, with
reference to nonlinear optics where |Ψ|2 refers to the intensity of light. Instead, since it vanishes
at one point, U0 is called the black soliton. Notice also, this turns out to be an important feature,
that solitons Uc with c ≃

√
2 have inde�nitely small energy.

Our goal in this paper is to study the (GP) �ow for initial data that are close to dark solitons,
and in particular to analyze the stability of solitons. Since we deal with an in�nite dimensional
dynamical system, the notion of stability relies heavily on the way to measure distances. A
preliminary step is to address the Cauchy problem with respect to these distances. In view of
the Hamiltonian E , the natural energy space for (GP) is given by

X (R) :=
{
Ψ ∈ H1

loc(R), Ψ′ ∈ L2(R) and 1− |Ψ|2 ∈ L2(R)
}
.

Due to the non-vanishing conditions at in�nity, it is not a vector space. Yet X (R) can be given
a structure of complete metric space through the distance

d(Ψ1,Ψ2) :=
∥∥Ψ1 −Ψ2

∥∥
L∞([−1,1])

+
∥∥Ψ′

1 −Ψ′
2

∥∥
L2(R) +

∥∥|Ψ1| − |Ψ2|
∥∥
L2(R).

In space dimension one, for an initial datum Ψ0 ∈ X (R), the Gross-Pitaevskii equation possesses
a unique global solution Ψ ∈ C0(R,X (R)), and moreover Ψ − Ψ0 ∈ C0(R,H1(R)) (see e.g.
[43, 19, 21] and Appendix A.1). In the sequel, stability is based on the distance d.

It is well-known that a perturbation of a soliton Uc at initial time cannot remain a perturbation
of the same soliton for all time. This is related to the fact that there is a continuum of solitons
with di�erent speeds. If Ψ0 = Uc for c ≃ c, but c ̸= c, then Ψ(x, t) = Uc(x − ct) diverges from
Uc(x− ct), as t→ +∞. The notion of orbital stability is tailored to deal with such situations. It
means that a solution corresponding to a perturbation of a soliton Uc at initial time remains a
perturbation of the family of solitons with same speed for all time. Orbital stability of dark and
black solitons was proved in [26, 3] (see also [1, 22, 5]).
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Theorem 1 ([26, 3]). Let c ∈ (−
√
2,
√
2). Given any positive number ε, there exists a positive

number δ such that, if

d
(
Ψ0, Uc

)
≤ δ,

then

sup
t∈R

inf
(a,θ)∈R2

d
(
Ψ(·, t), eiθUc(· − a)

)
≤ ε.

The proof of Theorem 1 is mainly variational. Following the strategy developed in [11] or
[41, 23], it combines minimizing properties of the solitons with the Hamiltonian nature of (GP)
through conservation of energy and momentum.

In the sequel, our focus is put on the notion of asymptotic stability. For a �nite dimensional
system, asymptotic stability of a stationary state or orbit means that any small perturbation
of the given state at initial time eventually converges to that state as time goes to in�nity.
For a �nite dimensional Hamiltonian system, this is excluded by the symplectic structure. In
in�nite dimension, one may take advantage of di�erent topologies to de�ne relevant notions of
asymptotic stability. Our main result is

Theorem 2. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number δc, depending only on c,

such that, if

d
(
Ψ0, Uc

)
≤ δc,

then there exist a number c∗ ∈ (−
√
2,
√
2)\{0}, and two functions b ∈ C1(R,R) and θ ∈ C1(R,R)

such that

b′(t) → c∗, and θ′(t) → 0,

as t→ +∞, and for which we have

e−iθ(t)Ψ
(
·+b(t), t

)
→ Uc∗ in L∞

loc(R), and e−iθ(t)∂xΨ
(
·+b(t), t

)
⇀ ∂xUc∗ in L2(R), (4)

in the limit t→ +∞.

Whereas Theorem 1 establishes that the solution remains close to the whole family of dark
solitons, Theorem 2 describes a convergence to some orbit on that family. In particular, it
expresses the fact that in the reference frame of the limit soliton, the perturbation is dispersed
towards in�nity.

Concerning the topology, the convergence in L∞
loc(R) in (4) cannot be improved into a conver-

gence in L∞(R), for instance due to the presence of additional small solitons, or to a possible
phenomenon of slow phase winding at in�nity. Similarly, the weak convergence of the gradients
in L2(R) cannot be improved into a strong convergence in L2(R), due to the Hamiltonian na-
ture of the equation. Yet, it is not impossible that the latter could be improved into a strong
convergence in L2

loc(R), but we have no proof of that fact.

Remarks. (i) Note that the case c = 0 is excluded from the statement of Theorem 2. For c ̸= 0,
if δc is chosen su�ciently small, it follows from the Sobolev embedding theorem and Theorem 1
that Ψ does not vanish on R × R. We rely heavily on this property for proving Theorem 2, in
particular in the next subsection where we introduce the hydrodynamical framework.

(ii) Complementing Theorem 2 with information from Theorem 1, one derives a control on
|c − c∗| relative to d(Ψ0, Uc), and in particular it directly follows from the two statements that
|c − c∗| → 0, as d(Ψ0, Uc) → 0. We will actually prove uniform estimates, valid for all times,
stating that

d
(
e−iθ(t)Ψ

(
·+b(t), t

)
, Uc∗

)
+
∣∣b′(t)− c

∣∣ ≤ Ac d
(
Ψ0, Uc

)
,
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where Ac depends only on c (see Theorem 3 below). We believe that the functions b(t)− c∗ and
θ(t) need not be bounded, and in particular need not have limits as t → +∞, unless additional
(regularity/localization) assumptions are made on the initial perturbation.

(iii) Finally, we mention that our proofs make no determinant use of the integrability of the
Gross-Pitaevskii equation, nor of the explicit nature of the solitons Uc. In particular, they could
presumably be extended to related nonlinearities (e.g. those studied in [12]) without major
modi�cations.

As previously mentioned, the Gross-Pitaevskii equation is both nonlinear and dispersive. For
constant coe�cient linear equations, dispersion implies local convergence towards zero as a con-
sequence of a stationary phase type argument. This property does not carry over to general
coe�cient or nonlinear equations. Persistent localized structures like ground states or solitons
are characteristic counter-examples. In that situation, dispersion around the localized structure,
through the linearized equation, seems more appropriate.

In [38, 39, 40], So�er and Weinstein studied the asymptotic stability of ground states for the
nonlinear Schrödinger equation with a potential in a regime for which the nonlinear ground-state
is a close continuation of the linear one. They establish dispersive estimates for the linearized
equation around the ground state in suitable weighted spaces, which allow to implement a �xed
point argument in a space of functions that vanish as time goes to in�nity. This was later
extended to a fully nonlinear regime for the nonlinear Schrödinger equation without potential
(see e.g. [8, 9, 10, 15]) and with a potential (see e.g. [20]). We refer to [16] for a detailed historical
survey of those and related works. In this context, the solutions behave at large time as a soliton
plus a purely scattering linear perturbation. This re�ects either a priori spectral assumptions or
the use of weighted spaces for the initial perturbation. In particular this prevents to consider
e.g. solutions of multi-soliton type, where a reference soliton is perturbed by one or more small
solitons which do not disperse in time. These solutions are known to exist for a large class of
nonlinearities.

A related equation where similar questions were addressed is given by the Korteweg-de Vries
equation, or its generalizations. In [36], Pego and Weinstein studied the asymptotic stability of
solitons in spaces of exponentially localized perturbations (see also [34] for perturbations with
algebraic decay). Here also, one may check a posteriori that multi-solitons are excluded from the
assumptions. In a series of papers, Martel and Merle [29, 30, 28, 31, 33, 32] were able to establish
the asymptotic stability of the generalized Korteweg-de Vries equations in the energy space
H1(R), without additional a priori assumptions. In particular, perturbations by multi-solitons
are there handled too. Their method di�ers in many respects with the ones above and relies
on a combination of variational and dynamical arguments in the form of localized monotonicity
formulas. Our work was strongly motivated by the possibility to obtain such an extension for the
Gross-Pitaevskii equation. Even though the later is also a nonlinear Schrödinger equation, the
non-vanishing boundary conditions at spatial in�nity modi�es the dispersive properties. More
precisely, the dispersion relation for the linearization of (GP) around the constant 1 is given by

ω2 = 2k2 + k4,

and therefore dispersive waves travel at speeds (positive or negative) greater than the speed of
sound

√
2. Instead, solitons are subsonic and hence the speeds of solitons and dispersive waves are

decoupled. In contrast, for the focusing nonlinear Schrödinger equation with vanishing boundary
conditions, the speeds of solitons and of dispersive waves overlap. The description of the dynamics
in the energy space near solitons of the focusing nonlinear Schrödinger equation is certainly more
delicate, since for instance in the case of a purely cubic nonlinearity the existence of breathers
prevent asymptotic stability.
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In higher dimension, the Gross-Pitaevskii equation possesses localized structures as well, in
particular in the form of vortices and travelling vortex pairs in dimension two, or vortex rings
in dimension three (see e.g. [7, 6, 2, 27]). Some of these have been proved to be orbitally stable
[13]. Their asymptotic stability remains an interesting open question which partially motivated
the present work.

In the remaining part of this introduction, we present the main ingredients leading to the proof
of Theorem 2.

1.1 Hydrodynamical form of the Gross-Pitaevskii equation

As mentioned above, when c ̸= 0 the soliton Uc does not vanish and may thus be written under
the form

Uc := ϱce
iφc ,

for smooth real functions ϱc and φc. In view of formula (3), the maps ηc := 1−ϱ2c and vc := −∂xφc

are given by

ηc(x) =
2− c2

2 cosh
(√

2−c2

2 x
)2 , and vc(x) =

cηc(x)

2
(
1− ηc(x)

) =
c(2− c2)

2
(
2 cosh

(√
2−c2

2 x
)2 − 2 + c2

) . (5)

In the sequel, we set
Qc,a :=

(
ηc,a, vc,a

)
:=
(
ηc(· − a), vc(· − a)

)
,

for 0 < |c| <
√
2 and a ∈ R. More generally, provided a solution Ψ to (GP) does not vanish, it

may be lifted without loss of regularity as

Ψ := ϱeiφ,

where ϱ := |Ψ|. The functions η := 1− ϱ2 and v := −∂xφ are solutions, at least formally, to the
so-called hydrodynamical form of (GP), namely

∂tη = ∂x
(
2ηv − 2v

)
,

∂tv = ∂x

(
v2 − η + ∂x

( ∂xη

2(1− η)

)
− (∂xη)

2

4(1− η)2

)
.

(HGP)

The Ginzburg-Landau energy E(Ψ), rewritten in terms of (η, v), is given by

E(η, v) :=

∫
R
e(η, v) :=

1

8

∫
R

(∂xη)
2

1− η
+

1

2

∫
R
(1− η)v2 +

1

4

∫
R
η2,

so that the energy space for (HGP) is the open subset

NV(R) :=
{
(η, v) ∈ X(R), s.t. max

x∈R
η(x) < 1

}
,

where the Hilbert space X(R) := H1(R)× L2(R) is equipped with the norm

∥(η, v)∥2X(R) := ∥η∥2H1(R) + ∥v∥2L2(R).

It is shown in [35] (see also Proposition A.4) that if Ψ ∈ C0(R, X(R)) is a solution to (GP) with
infR×R |Ψ| > 0, then (η, v) ∈ C0(R,NV(R)) is a solution to (HGP) and the energy E(η, v) is a
conserved quantity, as well as the momentum

P (η, v) :=
1

2

∫
R
ηv.
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1.2 Orbital stability in the hydrodynamical framework

The following is a quantitative version of Theorem 1 in the hydrodynamical framework (therefore
for c ̸= 0).

Theorem 3 ([26, 5]). Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number αc, depending

only on c, with the following properties. Given any (η0, v0) ∈ X(R) such that

α0 :=
∥∥(η0, v0)−Qc,a

∥∥
X(R) ≤ αc, (4)

for some a ∈ R, there exist a unique global solution (η, v) ∈ C0(R,NV(R)) to (HGP) with initial

data (η0, v0), and two maps c ∈ C1(R, (−
√
2,
√
2) \ {0}) and a ∈ C1(R,R) such that the function

ε de�ned by

ε(·, t) :=
(
η(·+ a(t), t), v(·+ a(t), t)

)
−Qc(t), (5)

satis�es the orthogonality conditions

⟨ε(·, t), ∂xQc(t)⟩L2(R)2 = P ′(Qc(t))(ε(·, t)) = 0, (6)

for any t ∈ R. Moreover, there exist two positive numbers σc and Ac, depending only and

continuously on c, such that

max
x∈R

η(x, t) ≤ 1− σc, (7)∥∥ε(·, t)∥∥
X(R) +

∣∣c(t)− c
∣∣ ≤ Acα

0, (8)

and ∣∣c′(t)∣∣+ ∣∣a′(t)− c(t)
∣∣2 ≤ Ac

∥∥ε(·, t)∥∥2
X(R), (9)

for any t ∈ R.

The proof of Theorem 3 is essentially contained in [5]. However, since the statement in [5]
slightly di�ers from the statement presented here, in particular regarding the quadratic depen-
dence of c′(t), we provide the few additional details in Section B.2 below. The main ingredient
is a spectral estimate which we recall now for future reference (see also Section B for additional
information). The functional E− cP is a conserved quantity of the �ow whenever c is �xed, and
it plays a particular role in the analysis since the solitons Qc are solutions of the equation

E′(Qc)− cP ′(Qc) = 0.

In particular, [
E − cP

](
Qc + ε

)
=
[
E − cP

](
Qc

)
+

1

2
Hc

(
ε
)
+O

(
∥ε∥3X(R)

)
,

as ε → 0 in X(R). In this formula, Hc denotes the quadratic form on X(R) corresponding to
the unbounded linear operator

Hc := E′′(Qc)− cP ′′(Qc).

The operator Hc is self-adjoint on L
2(R)×L2(R), with domain Dom(Hc) := H2(R)×L2(R). It

has a unique negative eigenvalue which is simple, and its kernel is given by

Ker(Hc) = Span(∂xQc). (10)

Moreover, under the orthogonality conditions

⟨ε, ∂xQc⟩L2(R)2 = P ′(Qc)(ε) = 0, (11)
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we have
Hc(ε) ≥ Λc∥ε∥2X(R),

where the positive number Λc depends only and continuously on c ∈ (−
√
2,
√
2) \ {0}. The �rst

orthogonality relation in (11) is related to the invariance by translation of E and P , which is
re�ected in the fact that ∂xQc is in the kernel of Hc. There is probably more freedom regarding
the second orthogonality relation in (11). Our choice was motivated by the possibility to obtain
the quadratic dependence of c′(t) stated in Theorem 3.

The pair ε obtained in Theorem 3 satis�es the equation

∂tε = JHc(t)(ε) + JRc(t)ε+
(
a′(t)− c(t)

)(
∂xε+ ∂xQc(t)

)
− c′(t)∂cQc(t), (12)

where J is the symplectic operator

J = −2S∂x :=

(
0 −2∂x

−2∂x 0

)
, (13)

and the remainder term Rc(t)ε is given by

Rc(t)ε := E′(Qc(t) + ε)− E′(Qc(t))− E′′(Qc(t))(ε).

1.3 Asymptotic stability in the hydrodynamical framework

An important part of the paper is devoted to the following theorem, from which we will eventually
deduce Theorem 2.

Theorem 4. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive constant βc ≤ αc, depending only

on c, with the following properties. Given any (η0, v0) ∈ X(R) such that∥∥(η0, v0)−Qc,a

∥∥
X(R) ≤ βc,

for some a ∈ R, there exist a number c∗ ∈ (−
√
2,
√
2) \ {0} and a map b ∈ C1(R,R) such that

the unique global solution (η, v) ∈ C0(R,NV(R)) to (HGP) with initial data (η0, v0) satis�es(
η(·+ b(t), t), v(·+ b(t), t)

)
⇀ Qc∗ in X(R),

and

b′(t) → c∗,

as t→ +∞.

In order to prove Theorem 4, a main step is to substitute the uniform estimates (8) and (9) by
suitable convergence estimates. We present the main ingredients in the proof of Theorem 4 in
the next subsections.

1.3.1 Construction of a limit pro�le

Let c ∈ (−
√
2,
√
2) \ {0} be �xed and let (η0, v0) ∈ X(R) be any pair satisfying the assumptions

of Theorem 4. Since βc ≤ αc in the assumptions of Theorem 4, by Theorem 3, we may consider
the unique globally de�ned solution (η, v) to (HGP) with initial datum (η0, v0).

We �x an arbitrary sequence of times (tn)n∈N tending to +∞. In view of (8) and (9), we may
assume, going to a subsequence if necessary, that there exist ε∗0 ∈ X(R) and c∗0 ∈ [−

√
2,
√
2] such

that
ε(·, tn) =

(
η(·+ a(tn), tn), v(·+ a(tn), tn)

)
−Qc(tn) ⇀ ε∗0 in X(R), (14)
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and
c(tn) → c∗0, (15)

as n→ +∞. In the next two subsections, we will eventually come to the conclusion (see Corollary
2) that necessarily

ε∗0 ≡ 0,

by establishing smoothness and rigidity properties for the solution of (HGP) with initial datum
given by Qc∗0

+ ε∗0.

More precisely, we �rst impose the constant βc to be su�ciently small so that, when α0 appearing
in Theorem 3 satis�es α0 ≤ βc, then in view of (8) and (9), we have

min
{
c(t)2, a′(t)2

}
≥ c2

2
, max

{
c(t)2, a′(t)2

}
≤ 1 +

c2

2
, (16)

and also ∥∥ηc(·)− η(·+ a(t), t)
∥∥
L∞(R) ≤ min

{c2
4
,
2− c2

64

}
, (17)

for any t ∈ R. In particular, we deduce that c∗0 ∈ (−
√
2,
√
2)\{0} and thereforeQc∗0

is well-de�ned
and di�erent from the black soliton.

It follows from (8) that ∣∣c∗0 − c
∣∣ ≤ Acβc, (18)

and from (8), (14) and the weak lower semi-continuity of the norm that the function

(η∗0, v
∗
0) := Qc∗0

+ ε∗0,

satis�es ∥∥(η∗0, v∗0)−Qc

∥∥
X(R) ≤ Acβc +

∥∥Qc −Qc∗0

∥∥
X(R). (19)

We next impose a supplementary smallness assumption on βc so that∥∥(η∗0, v∗0)−Qc

∥∥
X(R) ≤ αc.

Applying Theorem 3 yields a unique global solution (η∗, v∗) ∈ C0(R,NV(R)) to (HGP) with
initial data (η∗0, v

∗
0), and two maps c∗ ∈ C1(R, (−

√
2,
√
2) \ {0}) and a∗ ∈ C1(R,R) such that the

function ε∗ de�ned by

ε∗(·, t) :=
(
η∗(·+ a∗(t), t), v(·+ a∗(t), t)

)
−Qc∗(t), (20)

satis�es the orthogonality conditions

⟨ε∗(·, t), ∂xQc∗(t)⟩L2(R)2 = P ′(Qc∗(t))(ε
∗(·, t)) = 0, (21)

as well as the estimates∥∥ε∗(·, t)∥∥
X(R) +

∣∣c∗(t)− c
∣∣ ≤ Ac

∥∥(η∗0, v∗0)−Qc

∥∥
X(R), (22)∣∣c∗′(t)∣∣+ ∣∣a∗′(t)− c∗(t)

∣∣2 ≤ Ac

∥∥ε∗(·, t)∥∥2
X(R), (23)

for any t ∈ R.
We �nally restrict further the de�nition of βc, if needed, in such a way that (22) and (23),
together with (18) and (19), imply that

min
{
c∗(t)2, (a∗)′(t)2

}
≥ c2

2
, max

{
c∗(t)2, (a∗)′(t)2

}
≤ 1 +

c2

2
, (24)
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and ∥∥ηc(·)− η∗(·+ a∗(t), t)
∥∥
L∞(R) ≤ min

{c2
4
,
2− c2

64

}
, (25)

for any t ∈ R.
The following proposition, based on the weak continuity of the �ow map for the Gross-Pitaevskii
equation, allows to improve the convergence properties of the initial data, as stated in (14), into
convergence properties for the �ow under (HGP) and for the modulation parameters.

Proposition 1. Let t ∈ R be �xed. Then,(
η(·+ a(tn), tn + t), v(·+ a(tn), tn + t)

)
⇀
(
η∗(·, t), v∗(·, t)

)
in X(R), (26)

while

a(tn + t)− a(tn) → a∗(t), and c(tn + t) → c∗(t), (27)

as n→ +∞. In particular, we have

ε(·, tn + t)⇀ ε∗(·, t) in X(R), (28)

as n→ +∞.

1.3.2 Localization and smoothness of the limit pro�le

In order to prove localization of the limit pro�le, we rely heavily on a monotonicity formula.

Let (η, v) be as in Theorem 3 and assume that (16) and (17) hold. Given real numbers R and
t, we de�ne the quantity

IR(t) ≡ I
(η,v)
R (t) :=

1

2

∫
R

[
ηv
]
(x+ a(t), t)Φ(x−R) dx,

where Φ is the function de�ned on R by

Φ(x) :=
1

2

(
1 + tanh

(
νcx
))
, (29)

with νc :=
√
2− c2/8. The function IR(t) represents the amount of momentum of (η(·, t), v(·, t))

located from a (signed) distance R to the right of the soliton.

We have

Proposition 2. Let R ∈ R, t ∈ R, and σ ∈ [−σc, σc], with σc := (2 − c2)/(8
√
2). Under the

above assumptions, we have

d

dt

[
IR+σt(t)

]
≥(2− c2)2

211

∫
R

[
(∂xη)

2 + η2 + v2
]
(x+ a(t), t)Φ′(x−R− σt) dx

− 24
(2− c2)2

c4
e−2νc|R+σt|.

(30)

As a consequence, we obtain

IR(t1) ≥ IR(t0)− 211
√
2− c2

c4
e−2νc|R|, (31)

for any real numbers t0 ≤ t1.
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Specifying for the limit pro�le (η∗, v∗), we set I∗R(t) := I
(η∗,v∗)
R (t) for any R ∈ R and any t ∈ R.

We claim

Proposition 3. Given any positive number δ, there exists a positive number Rδ, depending only

on δ, such that we have ∣∣I∗R(t)∣∣ ≤ δ, ∀R ≥ Rδ,∣∣I∗R(t)− P (η∗, v∗)
∣∣ ≤ δ, ∀R ≤ −Rδ,

for any t ∈ R.

The proof of Proposition 3 relies on a contradiction argument. The rough idea is that if some
positive quantity δ of momentum for (η∗, v∗) were transferred from time t = 0 to time t = T and
from the interval (−∞, R+ a∗(0)) towards the interval (R+ a∗(T ),+∞), then a similar transfer
would hold for the function (η, v) from time t = tn to time t = tn + T and from the interval
(−∞, R + a(tn)) towards the interval (R + a(tn + T ),+∞), for any su�ciently large n. On the
other hand, assuming that tn+1 ≥ tn+T , the monotonicity formula implies that the momentum
for (η, v) at time tn+1 and inside the interval (R+ a(tn+1),+∞) is greater (up to exponentials)
than the momentum for (η, v) at time tn + T and inside the interval (R+ a(tn + T ),+∞). The
combination of those two information would yield that the momentum for (η, v) at time tn and
inside (R + a(tn),+ ∞) tends to +∞ as n → +∞, which is forbidden by the �niteness of the
energy of (η, v).

From Proposition 3, and using once more Proposition 2, we obtain

Proposition 4. Let t ∈ R. We have∫ t+1

t

∫
R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)e2νc|x| dx ds ≤ 223

c4(2− c2)
.

In order to prove the smoothness of the limit pro�le, we rely on the following smoothing type
estimate for localized solutions of the inhomogeneous linear Schrödinger equation.

Proposition 5. Let λ ∈ R and consider a solution u ∈ C0(R, L2(R)) to the linear Schrödinger

equation

i∂tu+ ∂xxu = F, (LS)

with F ∈ L2(R, L2(R)). Then, there exists a positive constant Kλ, depending only on λ, such
that

λ2
∫ T

−T

∫
R
|∂xu(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt, (31)

for any positive number T .

Applying Proposition 5 to the derivatives of Ψ∗, the solution to (GP) associated to the solution
(η∗, v∗) of (HGP), and then expressing the information in terms of (η∗, v∗), we obtain

Proposition 6. The pair (η∗, v∗) is inde�nitely smooth and exponentially decaying on R × R.
Moreover, given any k ∈ N, there exists a positive constant Ak,c, depending only on k and c, such
that ∫

R

[
(∂k+1

x η∗)2 + (∂kxη
∗)2 + (∂kxv

∗)2
]
(x+ a∗(t), t)e2νc|x| dx ≤ Ak,c, (32)

for any t ∈ R.

The proof of Proposition 5 and Proposition 6, as well as additional remarks concerning smooth-
ing properties for localized solutions are gathered in Appendix A.2.

10



1.3.3 Rigidity for the limit pro�le

Our main task is now to show that the limit pro�le constructed above is exactly a soliton, which
amounts to prove that ε∗0 ≡ 0.

Recall from (12) that ε∗ satis�es the equation

∂tε
∗ = JHc∗(t)(ε

∗) + JRc∗(t)ε
∗ +

(
a∗′(t)− c∗(t)

)(
∂xQc∗(t) + ∂xε

∗)− c∗′(t)∂cQc∗(t). (33)

Our strategy is to derive suitable integral estimates on ε∗. Since the linear operator Hc has a
kernel given by ∂xQc, it turns out that it is more convenient to derive �rst integral estimates for
the quantity Hc∗(ε

∗) (so that the component along the kernel is eliminated) rather than directly
on ε∗. This idea was already successfully used by Martel and Merle in [32] (see also [28]) for the
generalized Korteweg-de Vries equation. The smoothness and decay obtained in the previous
subsection allow us to perform as many di�erentiations as we wish.

More precisely, we de�ne the pair

u∗(·, t) := SHc∗(t)(ε
∗(·, t)). (34)

Since SHc∗(t)(∂xQc∗(t)) = 0, we deduce from (33) that

∂tu
∗ = SHc∗(t)

(
JSu∗

)
+ SHc∗(t)

(
JRc∗(t)ε

∗)− (c∗)′(t)SHc∗(t)(∂cQc∗(t))

+ (c∗)′(t)S∂cHc∗(t)(ε
∗) +

(
(a∗)′(t)− c∗(t)

)
SHc∗(t)(∂xε

∗).
(35)

At spatial in�nity, the operator Hc is asymptotically of constant coe�cients, and therefore
almost commutes with J . Therefore the linear operator in (35), namely Hc∗J , coincides in
that limit with the linear operator JHc∗ appearing in (33). It is thus not surprising that a
monotonicity formula similar in spirit to the monotonicity of the localized momentum for ε∗ (see
Proposition 2) also holds for u∗. More precisely, decreasing further the value of βc if necessary,
we obtain

Proposition 7. There exist two positive numbers A∗ and R∗, depending only on c, such that we

have 1

d

dt

(∫
R
xu∗1(x, t)u

∗
2(x, t) dx

)
≥ 2− c2

64

∥∥u∗(·, t)∥∥2
X(R) −A∗∥u∗(·, t)∥2X(B(0,R∗))

, (36)

for any t ∈ R.

In order to get rid of the non-positive local term ∥u∗(·, t)∥2X(B(0,R∗))
in the right-hand side of

(36), we invoke a second monotonicity type formula. If M is a smooth, bounded, two-by-two
symmetric matrix-valued function, then

d

dt

⟨
Mu∗, u∗

⟩
L2(R)2 = 2

⟨
SMu∗,Hc∗(JSu

∗)
⟩
L2(R)2 + �super-quadratic terms�. (37)

For c ∈ (−
√
2,
√
2) \ {0}, let Mc be given by

Mc :=

(
− c∂xηc

2(1−ηc)2
−∂xηc

ηc

−∂xηc
ηc

0

)
. (38)

The choice of Mc is motivated by the following key observation.

1In (36), we have use the notation∥∥(f, g)∥∥2

X(Ω)
:=

∫
Ω

(
(∂xf)

2 + f2 + g2
)
,

in which Ω denotes a measurable subset of R.

11



Lemma 1. Let c ∈ (−
√
2,
√
2) \ {0} and u ∈ X3(R). Then,

Gc(u) :=2
⟨
SMcu,Hc(JSu)

⟩
L2(R)2

=2

∫
R

(
ηc + ∂xxηc

)(
u2 −

cηc
2(ηc + ∂xxηc)

u1 −
c∂xηc

2(1− ηc)(ηc + ∂xxηc)
∂xu1

)2
+

3

2

∫
R

η2c
ηc + ∂xxηc

(
∂xu1 −

∂xηc
ηc

u1

)2
.

(39)

Notice that the quadratic form Gc(u) in (39) is pointwise non-negative (and non-singular) since

ηc + ∂2xxηc = ηc
(
3− c2 − 3ηc

)
≥ c2

2
ηc > 0.

It also follows from (39) that
Ker(Gc) = Span(Qc).

In our situation, u∗ = SHc∗(ε
∗) is not proportional to Qc∗ . By the orthogonality relation (21),

we indeed have P ′(Qc∗(t))(ε
∗) = 0. Since one has Hc(∂cQc) = P ′(Qc), it follows that

0 = ⟨Hc∗(∂cQc∗), ε
∗⟩L2(R)2 = ⟨Hc∗(ε

∗), ∂cQc∗⟩L2(R)2 = ⟨u∗, S∂cQc∗⟩L2(R)2 . (40)

On the other hand,⟨
Qc∗ , S∂cQc∗

⟩
=

1

2

d

dc

⟨
Qc, SQc

⟩
|c=c∗

= 2
d

dc

(
P (Qc)

)
|c=c∗

= −2
(
2− c2∗

) 1
2 ̸= 0, (41)

which prevents u∗ from being proportional to Qc∗ . This leads to

Proposition 8. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number Λc, depending only

and continuously on c, such that

Gc(u) ≥ Λc

∫
R

[
(∂xu1)

2 + (u1)
2 + (u2)

2
]
(x)e−

√
2|x| dx, (42)

for any pair u ∈ X1(R) verifying

⟨u, S∂cQc⟩L2(R)2 = 0. (43)

Coming back to (37), we can prove

Proposition 9. There exists a positive number B∗, depending only on c, such that

d

dt

(⟨
Mc∗(t)u

∗(·, t), u∗(·, t)
⟩
L2(R)2

)
≥ 1

B∗

∫
R

[
(∂xu

∗
1)

2 + (u∗1)
2 + (u∗2)

2
]
(x, t)e−

√
2|x| dx

−B∗
∥∥ε∗(., t)∥∥ 1

2

X(R)
∥∥u∗(·, t)∥∥2

X(R),

(44)

for any t ∈ R.

Combining Proposition 7 and Proposition 9 yields

Corollary 1. Set

N(t) :=
1

2

(
0 x
x 0

)
+A∗B∗e

√
2R∗Mc∗(t).

We have
d

dt

(
⟨N(t)u∗(·, t), u∗(·, t)⟩L2(R)2

)
≥ 2− c2

128

∥∥u∗(·, t)∥∥2
X(R), (45)
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for any t ∈ R. In particular, ∫ +∞

−∞

∥∥u∗(·, t)∥∥2
X(R) dt < +∞. (46)

Therefore, there exists a sequence (t∗k)k∈N such that

lim
k→+∞

∥∥u∗(·, t∗k)∥∥2X(R) = 0. (47)

Combining (47) with the inequality∥∥ε∗(·, t)∥X(R) ≤ Ac

∥∥u∗(·, t)∥∥
X(R),

(see (3.17)), we obtain

lim
k→+∞

∥∥ε∗(·, t∗k)∥∥2X(R) = 0. (48)

Combining (48) with the orbital stability in Theorem 3, we are �nally led to

Corollary 2. We have

ε∗0 ≡ 0.

1.3.4 Proof of Theorem 4 completed

Let c ∈ (−
√
2,
√
2)\{0} and let (η0, v0) be as in the statement of Theorem 4. It follows from the

analysis in the previous three subsections that, given any sequence of times (tn)n∈N converging
to +∞, there exists a subsequence (tnk

)k∈N and a number c∗0 (su�ciently close to c as expressed
e.g. in (18)) such that(

η(·+ a(tnk
), tnk

), v(·+ a(tnk
), tnk

)
)
⇀ Qc∗0

in X(R),

as n→ +∞. By a classical argument for sequences, if we manage to prove that c∗0 is independent
of the sequence (tn)n∈N, then it will follow that(

η(·+ a(t), t), v(·+ a(t), t)
)
⇀ Qc∗0

in X(R), (49)

as t→ +∞.

We argue by contradiction. Assume that for two di�erent sequences (tn)n∈N and (sn)n∈N, both
tending to +∞, we have(

η(·+ a(tn), tn), v(·+ a(tn), tn)
)
⇀ Qc∗1

in X(R), (50)

and (
η(·+ a(sn), sn), v(·+ a(sn), sn)

)
⇀ Qc∗2

in X(R), (51)

as n→ +∞, with c∗1 ̸= c∗2 satisfying (18). Without loss of generality, we may assume that c∗1 < c∗2
and that the sequences (tn)n∈N and (sn)n∈N are strictly increasing and nested such that

tn + 1 ≤ sn ≤ tn+1 − 1, (52)

for any n ∈ N. The contradiction will follow essentially in the same way as for Proposition 3.

We set δ := P (Qc∗1
)−P (Qc∗2

) > 0. In order to be able to use (31), we choose a positive number
R su�ciently large so that

211
√
2− c2

c4
e−2νc|R| ≤ δ

10
.
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In particular, we have from Proposition 2 and (52),

I±R(sn) ≥ I±R(tn)−
δ

10
and I±R(tn+1) ≥ I±R(sn)−

δ

10
, (53)

for any n ∈ N. Increasing the value of R if necessary, we may also assume that∣∣∣∣12
∫
R

(
Φ(x+R)− Φ(x−R)

)
ηc∗i vc∗i (x) dx− P (Qc∗i

)

∣∣∣∣ ≤ δ

10
,

for i = 1, 2 (and with Φ as in (29)). In particular, in view of the convergences (50) and (51),
there exists an integer n0 such that∣∣I−R(tn)− IR(tn)− P (Qc∗1

)
∣∣ ≤ δ

5
, (54)

and ∣∣I−R(sn)− IR(sn)− P (Qc∗2
)
∣∣ ≤ δ

5
, (55)

for any n ≥ n0. Combining (53), (54) and (55), we obtain

IR(sn) ≥ IR(tn) +
δ

2
,

for any n ≥ n0, from which it follows again by (53) that

IR(tn+1) ≥ IR(tn) +
2δ

5
,

for any n ≥ n0. Therefore, the sequence (IR(tn))n∈N is unbounded, which is the desired contra-
diction.

At this stage, we have proved that (49) holds, and therefore, in view of the statement of Theorem
4, we set c∗ := c∗0. It is tempting to set also b(t) := a(t), but we have not proved that a′(t) → c∗

as t → +∞. We will actually not try to prove such a statement but rely instead on the weaker
form given by (27) which, once we now know that a∗(t) = c∗t since (η∗, v∗) = Qc∗ , reads

a(tn + t)− a(tn) → c∗t,

for any �xed t ∈ R and any sequence (tn)n∈N tending to +∞. The opportunity to replace
the function a by a function b satisfying the required assumptions then follows from the next
elementary real analysis lemma. The proof of Theorem 4 is here completed.

Lemma 2. Let c ∈ R and let f : R → R be a locally bounded function such that

lim
x→+∞

f(x+ y)− f(x) = cy,

for any y ∈ R. Then there exists a function g ∈ C1(R,R) such that

lim
x→+∞

g′(x) = c, and lim
x→+∞

|f(x)− g(x)| = 0.

Proof. Replacing f(x) by f(x)− cx, we may assume that c = 0. It then su�ces to replace f by
its convolution by any �xed molli�er and the conclusion follows from the Lebesgue dominated
convergence theorem.
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1.4 Asymptotic stability in the original framework: Proof of Theorem 2

We �rst de�ne δc in such a way that ∥(η0, v0)−Qc∥X(R) ≤ βc, whenever d(Ψ
0, Uc) ≤ δc. We next

apply Theorem 4 to the solution (η, v) ∈ C0(R,NV(R)) to (HGP) corresponding to the solution
Ψ to (GP). This provides us with a speed c∗ and a position function b. We now construct the
phase function θ, and then derive the convergences in the statement of Theorem 2.

We �x a function χ ∈ C∞
c (R, [0, 1]) such that χ is real, even, and satis�es

∫
R χ(x) dx = 1. In

view of the expression of Uc∗ in (3), we have∫
R
Uc∗(x)χ(x) dx = i

c∗√
2
̸= 0.

Decreasing the value of βc if needed, we deduce from orbital stability that∣∣∣∣ ∫
R
Ψ(x+ b(t), t)χ(x) dx

∣∣∣∣ ≥ |c∗|
2
√
2
> 0,

for any t ∈ R. In particular, there exists a unique ϑ : R → R/(2πZ) such that

e−iϑ(t)

∫
R
Ψ(x+ b(t), t)χ(x) dx ∈ i

c∗√
2
R+,

for any t ∈ R. Since b ∈ C1
b (R,R), and since both ∂xΨ and ∂tΨ belong to C0

b (R,H
−1
loc (R)), it

follows by the chain rule and transversality that ϑ ∈ C1
b (R,R/(2πZ)). From Theorem 4 and the

de�nition of ϑ, we also infer that

e−iϑ(t)∂xΨ(·+ b(t), t) ⇀ ∂xUc∗ in L2(R),
1−

∣∣e−iϑ(t)Ψ(·+ b(t), t)
∣∣2 ⇀ 1−

∣∣Uc∗
∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t) → Uc∗ in L∞
loc(R),

(56)

as t→ +∞. Invoking the weak continuity of the Gross-Pitaevskii �ow, as stated in Proposition
A.3, as well as its equivariance with respect to a constant phase shift and the fact that Uc∗ is an
exact soliton of speed c∗, it follows that for any �xed T ∈ R,

e−iϑ(t)∂xΨ(·+ b(t), t+ T ) ⇀ ∂xUc∗(· − c∗T ) in L2(R),
1−

∣∣e−iϑ(t)Ψ(·+ b(t), t+ T )
∣∣2 ⇀ 1−

∣∣Uc∗(· − c∗T )
∣∣2 in L2(R),

e−iϑ(t)Ψ(·+ b(t), t+ T ) → Uc∗(· − c∗T ) in L∞
loc(R),

(57)

as t→ +∞. On the other hand, rewriting (56) at time t+ T , we have

e−iϑ(t+T )∂xΨ(·+ b(t+ T ), t+ T ) ⇀ ∂xUc∗ in L2(R),
1−

∣∣e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T )
∣∣2 ⇀ 1−

∣∣Uc∗
∣∣2 in L2(R),

e−iϑ(t+T )Ψ(·+ b(t+ T ), t+ T ) → Uc∗ in L∞
loc(R),

(58)

as t→ +∞. Since we already know by Theorem 4 that

b(t+ T )− b(t) → c∗T, (59)

as t→ +∞, we deduce from (57), (58) and (59) that(
ei(ϑ(t)−ϑ(t+T )) − 1

)
Uc∗ → 0 in L∞

loc(R),

as t→ +∞. Therefore, we �rst have

lim
t→+∞

ϑ(t+ T )− ϑ(t) = 0 in R/(2πZ),

but then also in R for any lifting of ϑ, since we have a global bound on the derivative of ϑ.

As for the proof of Theorem 4, the conclusion then follows from Lemma 2 applied to (any lifting
of) ϑ. This yields a function θ such that θ′(t) → 0, and ϑ(t)−θ(t) → 0 as t→ +∞. In particular,
we may substitute ϑ(t) by θ(t) in (56), and obtain the desired conclusions.
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2 Proofs of localization and smoothness of the limit pro�le

2.1 Proof of Proposition 2

First, we deduce from (HGP) the identity

d

dt

[
IR+σt(t)

]
=− 1

2
(a′(t) + σ)

∫
R

[
ηv
]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

2

∫
R

[
(1− 2η)v2 +

η2

2
+

(3− 2η)(∂xη)
2

4(1− η)2

]
(x+ a(t), t)Φ′(x−R− σt) dx

+
1

4

∫
R

[
η + ln(1− η)

]
(x+ a(t), t)Φ′′′(x−R− σt) dx.

(2.1)

Our goal is to provide a lower bound for the integrand in the right-hand side of (2.1). We will
decompose the domain of integration into two parts, [−R0, R0] and its complement, where R0 is
to be de�ned below. Outside [−R0, R0], we will bound the integrand pointwise from below by a
positive quadratic form in (η, v). Exponentially small error terms will arise from integration on
[−R0, R0].

First notice that

ηc ≤ ν2c if cosh2
(√2− c2

2
x
)
≥ 32,

i.e., if

|x| ≥ R0 :=
2√

2− c2
cosh−1(4

√
2).

In particular, we infer from (17) that∣∣η(x+ a(t), t)
∣∣ ≤ 2ν2c , (2.2)

for any x /∈ [−R0, R0]. Elementary real analysis and (2.2) then imply that∣∣[η + ln(1− η)
]
(x+ a(t), t)

∣∣ ≤ η2(x+ a(t), t), (2.3)

for any x /∈ [−R0, R0]. Next, notice that the function Φ satis�es the inequality

|Φ′′′| ≤ 4ν2cΦ
′. (2.4)

Finally, in view of the bound (16) on a′(t) and the de�nition of σc, we obtain that

∣∣a′(t) + σ
∣∣2 ≤ 3

2
+

c2

4
. (2.5)

Taking into account (2.2), (2.3), (2.4) and (2.5), we may bound the integrand of (2.1) on R \
[−R0, R0] from below by[(1

2
− 2ν2c

)
v2 +

(1
4
− ν2c

)
η2 −

√
3

8
+

c2

16
|ηv|+ 1

4
(∂xη)

2

]
(x+ a(t), t)Φ′(x−R− σt).

Set a := 1/4− ν2c = 7/32 + c2/64 and b :=
√

3/8 + c2/16. In the above quadratic form, we may
write

aη2 − b|ηv|+ 2av2 =
b

2
√
2

(
|η| −

√
2|v|
)2

+
(
a− b

2
√
2

)(
η2 + 2v2

)
≥
(
a− b

2
√
2

)(
η2 + 2v2

)
,
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and compute

a− b

2
√
2
=

a2 − b2

8

a+ b
2
√
2

≥ 2a2 − b2

4
=

(2− c2)2

211
.

We next consider the case x ∈ [−R0, R0]. In that region, we simply bound the positive function
Φ′(x−R− σt) by a constant,

Φ′(x−R− σt) ≤ 2νce
−2νc|R+σt−R0| ≤ 2νce

2νcR0e−2νc|R+σt| ≤ 8νce
−2νc|R+σt|,

and control the remaining integral using the energy. More precisely, notice that for those x,
ηc ≥ ν2c and therefore by (17), we also have η ≥ 0 (in the remaining part of the proof when we
refer to η or v we mean the value at the point (x + a(t), t)). Next, we have 1 − ηc ≥ c2/2, and
therefore by (17) also, 1 − η ≥ c2/4. Finally, recall that |a′(t) + σ|/2 ≤

√
2/2, and that (2.4)

holds, so that combining the previous estimates and elementary real analysis, we may bound the
integrand in the right-hand side of (2.1) by[(

4 + (2− c2) ln
(c2
4

))
η2 + 8v2 +

48

c4
(∂xη)

2

]
νce

−2νc|R+σt|.

Conclusion (30) follows from integration and a comparison with the energy of (η, v), together

with the explicit value E(Qc) = (2− c2)
3
2 /3 (see e.g. [5]).

It remains to prove (31). For that purpose, we distinguish two cases, depending on the sign
of R. If R ≥ 0, we integrate (30) from t = t0 to t = (t0 + t1)/2 with the choice σ = σc and
R = R−σct0, and then from t = (t0+ t1)/2 to t = t1 with the choice σ = −σc and R = R+σct1.
In total, we hence integrate on a broken line starting and ending at a distance R from the soliton.
If R ≤ 0, we argue similarly, choosing �rst σ = −σc, and next σ = σc. This yields (31), and
completes the proof of Proposition 2.

2.2 Proof of Proposition 3

We argue by contradiction and assume that there exists a positive number δ0 such that, for any
positive number Rδ0 , there exist two numbers R ≥ Rδ0 and t ∈ R such that either |I∗R(t)| ≥ δ0
or |I∗R(t) − P (η∗, v∗)| ≥ δ0. Since at time t = 0, we have limR→+∞ I∗R(0) = limR→−∞ I∗R(0) −
P (η∗, v∗) = 0, we �rst �x Rδ0 > 0 such that

|I∗R(0)|+ |I∗−R(0)− P (η∗, v∗)| ≤ δ0
4

and 211
√
2− c2

c4
e−2νcR ≤ δ0

32
, (2.6)

for any R ≥ Rδ0 . We next �x R > 0 and t ∈ R obtained from the contradiction assumption
for that choice of Rδ0 , so that either |I∗R(t)| ≥ δ0 or |I∗R(t) − P (η∗, v∗)| ≥ δ0. In the sequel, we
assume that I∗R(t) ≥ δ0 holds, the three other cases would follow in a very similar manner. In
particular, we infer from (2.6) that

I∗R(t) ≥ δ0 ≥
δ0
4

+
δ0
16

≥ I∗R(0) + 212
√
2− c2

c4
e−2νcR,

and therefore it follows from the monotonicity formula in Proposition 2, applied to (η∗, v∗), that
t > 0. Finally, we �x R′ ≥ R such that∣∣I∗−R′(t)− P (η∗, v∗)

∣∣ ≤ δ0
4
. (2.7)

17



Since R′ ≥ R, we also deduce from (2.6) that

∣∣I∗−R′(0)− P (η∗, v∗)
∣∣ ≤ δ0

4
and 211

√
2− c2

c4
e−2νcR′ ≤ δ0

32
. (2.8)

Combining the inequality |I∗R(t)| ≥ δ0 with (2.6), (2.7) and (2.8), we obtain

∣∣I∗−R′(t)− I∗R(t)− P (η∗, v∗)
∣∣ ≥ 3δ0

4
and

∣∣I∗−R′(0)− I∗R(0)− P (η∗, v∗)
∣∣ ≤ δ0

2
,

and therefore ∣∣∣(I∗−R′(0)− I∗R(0)
)
−
(
I∗−R′(t)− I∗R(t)

)∣∣∣ ≥ δ0
4
.

Since the integrands of the expressions between parenthesis are localized in space, we deduce
from Proposition 1 that there exists an integer n0 such that∣∣∣(I−R′(tn)− IR(tn)

)
−
(
I−R′(tn + t)− IR(tn + t)

)∣∣∣ ≥ δ0
8
,

for any n ≥ n0. Rearranging the terms in the previous inequality yields

max
{∣∣I−R′(tn)− I−R′(tn + t)

∣∣, ∣∣IR(tn)− IR(tn + t)
∣∣} ≥ δ0

16
. (2.9)

On the other hand, since t ≥ 0, by the monotonicity formula in Proposition 2, (2.6) and (2.8),
we have

I−R′(tn)− I−R′(tn + t) ≤ δ0
32

and IR(tn)− IR(tn + t) ≤ δ0
32
,

and therefore we deduce from (2.9) that, given any n ≥ n0,

either I−R′(tn + t)− I−R′(tn) ≥
δ0
16
, or IR(tn + t)− IR(tn) ≥

δ0
16
.

In particular, there exists an increasing sequence (nk)k∈N such that tnk+1
≥ tnk

+ t for any k ∈ N,
and either

IR(tnk
+ t)− IR(tnk

) ≥ δ0
16
, (2.10)

for any k ∈ N, or
I−R′(tnk

+ t)− I−R′(tnk
) ≥ δ0

16
,

for any k ∈ N. In the sequel, we assume that (2.10) holds, here also the other case would follow
in a very similar manner. Since tnk+1

≥ tnk
+ t, we obtain by the monotonicity formula of

Proposition 2, (2.6) and (2.10), that

IR(tnk+1
) ≥ IR(tnk+t)−

δ0
32

≥ IR(tnk
) +

δ0
32
, (2.11)

for any k ∈ N. On the other hand, we have∣∣IR(tnk
)
∣∣ ≤ 1

2

∫
R

∣∣η(x, tnk
)
∣∣∣∣v(x, tnk

)
∣∣ dx ≤ 1

4

∫
R

(
|η(x, tnk

)|2 + |v(x, tnk
)|2
)
dx ≤ 2

c2
E(η, v),

where the last term does not depend on k by conservation of energy. This yields a contradiction
with (2.11).

18



2.3 Proof of Proposition 4

Let s ∈ R and R ≥ 0 be arbitrary. Integrating (30) of Proposition 2, and choosing successively
σ = σc and σ = −σc, we infer that we have both

I∗R(s) ≤ I∗R+σcτ (s+ τ) + 211
√
2− c2

c4
e−2νcR,

and

I∗R(s) ≥ I∗R+σcτ (s− τ)− 211
√
2− c2

c4
e−2νcR,

for each positive number τ . Taking the limit as τ → +∞ in the previous two inequalities, we
deduce from Proposition 3 that

∣∣I∗R(s)∣∣ ≤ 211
√
2− c2

c4
e−2νcR,

for any s ∈ R and R ≥ 0. Similarly, we obtain

∣∣I∗R(s)− P (η∗, v∗)
∣∣ ≤ 211

√
2− c2

c4
e−2νc|R|,

for any s ∈ R and R ≤ 0. Therefore, integrating (30) from t to t+1 with the choice σ = 0 yields∫ t+1

t

∫
R

[
(∂xη

∗)2 + (η∗)2 + (v∗)2
]
(x+ a∗(s), s)Φ′(x−R) dx ds ≤ 214

c4

(
3 +

29

(2− c2)
3
2

)
e−2νc|R|,

for any R ∈ R. Since we have

lim
R→±∞

e2νc|R|Φ′(x−R) = 2νce
±2νcx,

for any x ∈ R, the conclusion follows from the Fatou lemma, the inequality

e2νc|x| ≤ e−2νcx + e2νcx,

and elementary real estimates.

3 Proofs of the rigidity properties for the limit pro�le

3.1 Proof of Proposition 7

In order to establish inequality (36), we �rst check that we are allowed to di�erentiate the
quantity

I∗(t) :=

∫
R
xu∗1(x, t)u

∗
2(x, t) dx,

in the right-hand side of (36). This essentially follows from Proposition 6. Combining (32) with
the explicit formulae for ηc and vc in (5), we indeed derive the existence of a positive number
Ak,c such that ∫

R

((
∂kxε

∗
η(x, t)

)2
+
(
∂kxε

∗
v(x, t)

)2)
e2νc|x| dx ≤ Ak,c, (3.1)

for any k ∈ N and any t ∈ R. In view of the formulae for u∗ in (34) and for Hc in (B.1), a similar
estimate holds for u∗, for a further choice of the constant Ak,c. In view of (35), this is enough to
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de�ne properly the quantity I∗ and establish its di�erentiability with respect to time. Moreover,
we can compute

d

dt

(
I∗
)
=− 2

∫
R
µ
⟨
Hc∗(∂xu

∗), u∗
⟩
R2 +

∫
R
µ
⟨
Hc∗

(
JRc∗ε

∗), u∗⟩R2 +
(
c∗
)′ ∫

R
µ
⟨
∂cHc∗(ε

∗), u∗
⟩
R2

−
(
c∗
)′ ∫

R
µ
⟨
Hc∗(∂cQc∗), u

∗⟩
R2 +

(
(a∗)′ − c∗

) ∫
R
µ
⟨
Hc∗(∂xε

∗), u∗
⟩
R2 ,

(3.2)

where we have set µ(x) = x for any x ∈ R. In particular, the proof of Proposition 7 reduces to
estimate each of the �ve integrals in the right-hand side of (3.2).

We split the proof into �ve steps. Concerning the �rst integral, we have

Step 1. There exist two positive numbers A1 and R1, depending only on c, such that

I∗
1 (t) := −2

∫
R
µ
⟨
Hc∗(∂xu

∗), u∗
⟩
R2 ≥ 2− c2

16

∥∥u∗(·, t)∥∥2
X(R) −A1

∥∥u∗(·, t)∥∥2
X(B(0,R1))

, (3.3)

for any t ∈ R.

In order to prove inequality (3.3), we replace the operator Hc∗ in the de�nition of I∗
1 (t) by its

explicit formula (see (B.1)), and we integrate by parts to obtain

I∗
1 (t) =

∫
R
ι∗1(x, t) dx,

with

ι∗1 =
1

4

( 3∂xµ

1− ηc∗
− µ∂xηc∗

(1− ηc∗)2

)
(∂xu

∗
1)

2 − c∗∂x

( µ

1− ηc∗

)
u∗1u

∗
2 + ∂x

(
µ(1− ηc∗)

)
(u∗2)

2

+
1

4
∂x

(
µ
(
2− ∂xxηc∗

(1− ηc∗)2
− (∂xηc∗)

2

(1− ηc∗)3

)
− ∂x

( ∂xµ

1− ηc∗

))
(u∗1)

2.

Here, we have used the identity
c∗

2
+ vc∗ =

c∗

2(1− ηc∗)
,

so as to simplify the factor in front of u∗1u
∗
2. Since µ(x) = x, the integrand ι∗1 may also be written

as

ι∗1 =
1

4

( 3

1− ηc∗
− x∂xηc∗

(1− ηc∗)2

)
(∂xu

∗
1)

2 − c∗
(1− ηc∗ + x∂xηc∗

(1− ηc∗)2

)
u∗1u

∗
2 +

(
1− ηc∗ − x∂xηc∗

)
(u∗2)

2

+
1

4

(
2− 2∂xxηc∗

(1− ηc∗)2
− 3(∂xηc∗)

2

(1− ηc∗)3
− x
( ∂xxxηc∗

(1− ηc∗)2
+

4(∂xηc∗)(∂xxηc∗)

(1− ηc∗)3
+

3(∂xηc∗)
3

(1− ηc∗)4

))
(u∗1)

2.

Given a small positive number δ, we next rely on the exponential decay of the function ηc and
its derivatives to guarantee the existence of a radius R, depending only on c and δ (in view of
the bound on c∗ − c in (22)), such that

ι∗1(x, t) ≥
3

4

(
∂xu

∗
1(x, t)

)2
+

1

2
u∗1(x, t)

2 − c∗(t)u∗1(x, t)u
∗
2(x, t) + u∗2(x, t)

2

− δ
(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)

≥
(3
4
− δ
)(
∂xu

∗
1(x, t)

)2
+
(1
2
− |c∗(t)|

2
√
2

− δ
)
u∗1(x, t)

2 +
(
1− |c∗(t)|√

2
− δ
)
u∗2(x, t)

2,
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when |x| ≥ R. In this case, it is enough to choose δ = (2 − c2)/32 and �x the number R1

according to the value of the corresponding R, to obtain∫
|x|≥R1

ι∗1(x, t) dx ≥ 2− c2

16

∫
|x|≥R1

(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)
dx. (3.4)

On the other hand, it follows from (5), and again (22), that∫
|x|≤R1

ι∗1(x, t) dx ≥
(2− c2

16
−A1

)∫
|x|≤R1

(
(∂xu

∗
1(x, t))

2 + u∗1(x, t)
2 + u∗2(x, t)

2
)
dx,

for a positive number A1 depending only on c. Combining with (3.4), we obtain (3.3).

We next turn to the second integral in the right-hand side of (3.2).

Step 2. There exist two positive numbers A2 and R2, depending only on c, such that

∣∣I∗
2 (t)

∣∣ := ∣∣∣∣ ∫
R
µ
⟨
Hc∗

(
JRc∗ε

∗), u∗⟩R2

∣∣∣∣ ≤ 2− c2

64

∥∥u∗(·, t)∥∥2
X(R) +A2

∥∥u∗(·, t)∥∥2
X(B(0,R2))

, (3.5)

for any t ∈ R.

Given a small positive number δ, there exists a radius R, depending only on δ and c, such that

|x| ≤ δe
νc|x|

2 , (3.6)

for any |x| ≥ R. As a consequence, we can estimate the integral I∗
2 (t) as∣∣I∗

2 (t)
∣∣ ≤R ∫

|x|≤R

∣∣Hc∗(t)

(
JRc∗(t)ε

∗)(x, t)∣∣∣∣u∗(x, t)∣∣ dx
+ δ

∫
|x|≥R

∣∣Hc∗(t)

(
JRc∗(t)ε

∗)(x, t)∣∣∣∣u∗(x, t)∣∣e νc|x|
2 dx.

(3.7)

In order to estimate the two integrals in the right-hand side of (3.7), we �rst deduce from (B.1)
the existence of a positive number Ac, depending only on c, again by (22), such that, given any
pair ε ∈ H2(R)× L2(R), we have∣∣Hc∗(ε)

∣∣ ≤ Ac

(∣∣∂xxεη∣∣+ ∣∣∂xεη∣∣+ ∣∣εη∣∣+ ∣∣εv∣∣).
In view of (13), it follows that∣∣Hc∗(Jε)

∣∣ ≤ 2Ac

(∣∣∂xxxεv∣∣+ ∣∣∂xxεv∣∣+ ∣∣∂xεv∣∣+ ∣∣∂xεη∣∣), (3.8)

when ε ∈ H1(R)×H3(R).
On the other hand, given an integer ℓ, we can apply the Leibniz rule to the second identity in
(B.12) to compute

∣∣∂ℓx[Rc∗ε
∗]v
∣∣ ≤ ℓ∑

k=0

(
ℓ

k

)∣∣∂kxε∗η∣∣∣∣∂ℓ−k
x ε∗v

∣∣ ≤ Kℓ

ℓ∑
k=0

∣∣∂kxε∗∣∣2, (3.9)

where Kℓ refers to some constant depending only on ℓ. Similarly, we can combine the Leibniz
rule with (5), (22) and (25) to obtain
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∣∣∂x[Rc∗ε
∗]η
∣∣ ≤ Ac

( 1∑
k=0

∣∣∂kxε∗v∣∣2 + 3∑
k=0

∣∣∂kxε∗η∣∣2 + ∣∣∂xε∗η∣∣3). (3.10)

Here, we have also applied the Sobolev embedding theorem to bound the norm ∥ε∗η(·, t)∥L∞(R)
by Acα0 according to (22). Combining with (3.8), we are led to

∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)∥∥2
L2(R)2 ≤ Ac

(∥∥∂xε∗η(·, t)∥∥6L6(R) +

3∑
k=0

∥∥∂kxε∗(·, t)∥∥4L4(R)2

)
.

At this stage, we invoke again the Sobolev embedding theorem to write∫
R

(
∂ℓxf

)2p
= (−1)ℓ

∫
R
f ∂ℓx

((
∂ℓxf

)2p−1
)
≤ K

∥∥f∥∥
L2(R)

∥∥f∥∥2p−1

H2ℓ+1(R), (3.11)

for any ℓ ∈ N, any p ≥ 1, and any f ∈ H2ℓ+1(R). Combining with (22), it follows that∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)∥∥2
L2(R)2 ≤K

∥∥ε∗(·, t)∥∥
L2(R)2

(∥∥ε∗η(·, t)∥∥5H3(R) +
∥∥ε∗(·, t)∥∥3

H7(R)2

)
≤Ac

∥∥ε∗(·, t)∥∥2
L2(R)2

(∥∥ε∗η(·, t)∥∥ 5
2

H7(R) +
∥∥ε∗(·, t)∥∥ 3

2

H15(R)2

)
.

(3.12)

Since ∥∥∂ℓxε∗(·, t)∥∥2L2(R)2 ≤
∫
R
e2νc|x|

(
∂ℓxε

∗(x, t)
)2
dx, (3.13)

we can invoke (3.1) to conclude that∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)∥∥
L2(R) ≤ Ac

∥∥ε∗(·, t)∥∥
L2(R)2 . (3.14)

On the other hand, we deduce from (3.8), (3.9) and (3.10) as before that

∥∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)e νc|·|
2

∥∥∥2
L2(R)

≤ Ac

(∫
R

(
∂xε

∗
η(x, t)

)6
eνc|x| dx+

3∑
k=0

∫
R

∣∣∂xε∗(x, t)∣∣4eνc|x| dx).
We also invoke the Sobolev embedding theorem to write∫

R

(
∂ℓxf(x)

)2p
eνcx dx =(−1)ℓ

∫
R
f(x)∂ℓx

((
∂ℓxf(x)

)2p−1
eνcx

)
dx

≤Ac

∥∥f∥∥
L2(R)

∥∥f∥∥2p−2

H2ℓ+1(R)

∥∥feνc·∥∥
H2ℓ+1(R)

≤Ac

∥∥f∥∥p−1

L2(R)

∥∥f∥∥p−1

H4ℓ+3(R)

∥∥feνc·∥∥
H2ℓ+1(R),

for any ℓ ∈ N, any p ≥ 2, and any f ∈ H4ℓ+3(R), with feνc|·| ∈ H2ℓ+1(R). Since

eνc|x| ≤ eνcx + e−νcx ≤ 2eνc|x|, (3.15)

for any x ∈ R, the same estimate holds with eνc|x| replacing eνcx. As a consequence, we deduce
as before from (22), (3.1) and (3.13) that∥∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)e νc|·|
2

∥∥∥
L2(R)

≤ Ac

∥∥ε∗(·, t)∥∥
L2(R)2 .

Combining the previous inequality with (3.7) and (3.14), we derive the estimate∣∣I∗
2 (t)

∣∣ ≤ Ac

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)∥∥ε∗(·, t)∥∥
L2(R)2 , (3.16)

22



We �nally recall that
Su∗(·, t) = Hc∗(t)(ε

∗)(·, t),

with ⟨ε∗(·, t), ∂xQc∗(t)⟩L2(R)2 for any t ∈ R by (21). In view of (B.2), we infer that∥∥ε∗(·, t)∥∥
X(R) ≤ Ac

∥∥Su∗(·, t)∥∥
L2(R)2 ≤ Ac

∥∥u∗(·, t)∥∥
X(R), (3.17)

so that (3.16) may be written as

∣∣I∗
2 (t)

∣∣ ≤ Ac

(R2

δ

∥∥u∗(·, t)∥∥2
X(B(0,R))

+ 2δ
∥∥u∗(·, t)∥∥2

X(R)

)
.

Fixing the number δ so that 2Acδ ≤ (2−c2)/64, and letting R2 denote the corresponding number
R, we obtain (3.5), with A2 = AcR

2
2/δ.

Concerning the third term in the right-hand side of (3.2), we have

Step 3. There exists a positive number A3, depending only on c, such that

∣∣I∗
3 (t)

∣∣ := ∣∣∣∣(c∗)′ ∫
R
µ
⟨
∂cHc∗(ε

∗), u∗
⟩
R2

∣∣∣∣ ≤ A3α0

∥∥u∗(·, t)∥∥2
X(R), (3.18)

for any t ∈ R.

Coming back to (22) and (23), we have∣∣(c∗)′(t)∣∣ ≤ Acα0

∥∥ε∗(·, t)∥∥
X(R). (3.19)

On the other hand, we deduce from (22), (3.1) and the explicit formula for Hc∗ in (B.1) that∣∣∣∣ ∫
R
µ
⟨
∂cHc∗(ε

∗), u∗
⟩
R2

∣∣∣∣ ≤ Ac

∥∥u∗(·, t)∥∥
X(R).

Combining with (3.17), we obtain (3.18).

Similarly, we can combine (3.17) and (3.19) with the expression of Hc∗ in (B.1) and the expo-
nential decay of the function ∂cQc∗ and its derivatives, to establish

Step 4. There exists a positive number A3, depending only on c, such that

∣∣I∗
3 (t)

∣∣ := ∣∣∣∣(c∗)′ ∫
R
µ
⟨
Hc∗(∂cQc∗), u

∗⟩
R2

∣∣∣∣ ≤ A3α0

∥∥u∗(·, t)∥∥2
X(R), (3.20)

for any t ∈ R.

Finally, we show

Step 5. There exist two positive numbers A4 and R4, depending only on c, such that

∣∣I∗
4 (t)

∣∣ := ∣∣∣∣((a∗)′ − c∗
) ∫

R
µ
⟨
Hc∗(∂xε

∗), u∗
⟩
R2

∣∣∣∣ ≤ 2− c2

64

∥∥u∗(·, t)∥∥2
X(R) +A4

∥∥u∗(·, t)∥∥2
X(B(0,R4))

,

(3.21)
for any t ∈ R.
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The proof is similar to the one of Step 2. Given a small positive number δ, we can use (3.6) to
�nd a radius R such that∣∣∣∣ ∫

R
µ
⟨
Hc∗(∂xε

∗), u∗
⟩
R2

∣∣∣∣ ≤ ∥∥eνc|·|Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
.

In view of (23) and (3.8), this gives∣∣I∗
4 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)∥∥
X(R)

∥∥eνc|·|ε∗(·, t)∥∥
H4(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
,

so that by (3.1) and (3.17),∣∣I∗
4 (t)

∣∣ ≤ Ac

∥∥u∗(·, t)∥∥
X(R)

(
R
∥∥u∗(·, t)∥∥

X(B(0,R))
+ δ
∥∥u∗(·, t)∥∥

X(R)

)
.

Estimate (3.21) follows arguing as in the proof of (3.5).

We are now in position to conclude the proof of Proposition 7.

End of the proof of Proposition 7. Applying the estimates in Steps 1 to 5 to the identity (3.2),
we have

d

dt

(
I∗(t)

)
≥
(2− c2

32
−A3α0

)∥∥u∗(·, t)∥∥2
X(R) −

(
A1 +A2 +A4

)∥∥u∗(·, t)∥∥2
X(B(0,R∗))

,

with R∗ = max{R1, R2, R3}. Choosing α0 small enough, we are led to (36) with A∗ = A1+A2+
A4.

3.2 Proof of Lemma 1

Identity (39) derives from a somewhat tedious, but direct computation. For sake of completeness,
we provide the following details.

When u ∈ X3(R), the function JSu = −2∂xu lies in the domain H2(R) × L2(R) of Hc. In
view of (38), the quantity in the right-hand side of (39) is well-de�ned. Moreover, we can invoke
(B.1) to write it as

2
⟨
SMcu,Hc(JSu)

⟩
L2(R)2 =

∫
R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3

)
− c2

∂xηc
(1− ηc)3

)
u1∂xu1

−
∫
R

∂xηc
ηc

∂x

( ∂xxu1
1− ηc

)
+ 4

∫
R

∂xηc(1− ηc)

ηc
u2∂xu2

+ 2c

∫
R

(
∂xηc
1− ηc

u1∂xu2 −
∂xηc

ηc(1− ηc)
∂x
(
u1u2

))
.

(3.22)

In order to simplify the integrations by parts of the integrals in the right-hand side of (3.22)
which lead to (39), we recall that ηc solves the equation

∂xxηc = (2− c2)ηc − 3η2c , (3.23)

so that we have

(∂xηc)
2 = (2− c2)η2c − 2η3c , and ∂x

(∂xηc
ηc

)
= −ηc. (3.24)

As a consequence, the third integral in the right-hand side of (3.22) can be expressed as

4

∫
R

∂xηc(1− ηc)

ηc
u2∂xu2 = 2

∫
R
µcu

2
2, (3.25)
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with µc := ηc + ∂xxηc. The last integral is similarly given by∫
R

(
∂xηc
1− ηc

u1∂xu2 −
∂xηc

ηc(1− ηc)
∂x
(
u1u2

))
= −

∫
R

(
ηcu1u2 +

∂xηc
1− ηc

u2∂xu1

)
. (3.26)

Introducing (3.25) and (3.26) into (3.22), we obtain the identity

2
⟨
SMcu,Hc(JSu)

⟩
L2(R)2 = I + 2

∫
R
µc

(
u2 −

cηc
2µc

u1 −
c∂xηc

2µc(1− ηc)
∂xu1

)2
,

where

I =

∫
R

(
∂xηc
ηc

(
2− ∂xxηc

(1− ηc)2
− (∂xηc)

2

(1− ηc)3

)
− c2

∂xηc
(1− ηc)3

− c2
ηc∂xηc

µc(1− ηc)

)
u1∂xu1

−
∫
R

∂xηc
ηc

∂x

( ∂xxu1
1− ηc

)
− c2

2

∫
R

η2c
µc
u21 −

c2

2

∫
R

(∂xηc)
2

µc(1− ηc)2
(∂xu1)

2.

Relying again on (3.23) and (3.24), we �nally check that

I =
3

2

∫
R

η2c
µc

(
∂xu1 −

∂xηc
ηc

u1

)2
,

which is enough to complete the proof of identity (39).

3.3 Proof of Proposition 8

In view of (5) and (39), the quadratic form Gc is well-de�ned and continuous on X1(R). More-
over, setting v = (

√
ηcu1,

√
ηcu2) and using (3.24), we can write it as

Gc(u) =
3

2

∫
R

ηc
µc

(
∂xv1 −

3∂xηc
2ηc

v1

)2
+ 2

∫
R

µc
ηc

(
v2 −

c3ηc
4µc(1− ηc)

v1 −
c∂xηc

2µc(1− ηc)
∂xv1

)2
, (3.27)

where we have set, as above, µc := ηc + ∂xxηc. Introducing the pair

w =
(
v1, v2 −

c∂xηc
2µc(1− ηc)

∂xv1

)
=
(√

ηcu1,
√
ηc

(
u2 −

c(∂xηc)
2

4µcηc(1− ηc)
u1 −

c∂xηc
2µc(1− ηc)

∂xu1

))
,

(3.28)
we obtain

Gc(u) =
⟨
Tc(w), w

⟩
L2(R)2 , (3.29)

with

Tc(w) =

−∂x
(

3ηc
2µc

∂xw1

)
+
(
27(∂xηc)2

8µcηc
+ c6ηc

8µc(1−ηc)2
+ ∂x

(
9∂xηc
4µc

))
w1 − c3

2(1−ηc)
w2

− c3

2(1−ηc)
w1 +

2µc

ηc
w2

 . (3.30)

The operator Tc in (3.30) is self-adjoint on L2(R)2, with domain Dom(Tc) = H2(R) × L2(R).
Moreover, it follows from (3.27) and (3.29) that Tc is non-negative, with a kernel equal to

Ker(Tc) = Span
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)
.

In order to establish (42), we now prove
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Step 1. Let c ∈ (−
√
2,
√
2) \ {0}. There exists a positive number Λ1, depending continuously on

c, such that

⟨Tc(w), w⟩L2(R)2 ≥ Λ1

∫
R

(
w2
1 + w2

2

)
, (3.31)

for any pair w ∈ X1(R) such that

⟨
w,
(
η

3
2
c ,

c3η
5
2
c

4µc(1− ηc)

)⟩
L2(R)2

= 0. (3.32)

In order to prove Step 1, we show that the essential spectrum of Tc is given by

σess(Tc) =
[
τc,+∞

)
, (3.33)

with

τc =
(3− c2)(22 + c2)

16
− 1

2

((3− c2)2(22 + c2)2

64
− 27(2− c2)

) 1
2
> 0. (3.34)

In this case, 0 is an isolated eigenvalue in the spectrum of Tc. Inequality (3.31) follows with
Λ1 either equal to τc, or to the smallest positive eigenvalue of Tc. In each case, Λ1 depends
continuously on c due to the analytic dependence on c of the operator Tc.
The proof of (3.33) relies as usual on the Weyl criterion. We deduce from (3.23) and (3.24)
that

µc(x)

ηc(x)
→ 3− c2, and

∂xηc(x)

ηc(x)
→ ±

√
2− c2,

as x→ ±∞. Coming back to (3.30), we introduce the operator T∞ given by

T∞(w) =

(
− 3

2(3−c2)
∂xxw1 +

(3−c2)(6+c2)
8 w1 − c3

2 w2

− c3

2 w1 + 2(3− c2)w2

)
.

By the Weyl criterion, the essential spectrum of Tc is equal to the spectrum of T∞.

We next apply again the Weyl criterion to establish that a real number λ belongs to the spectrum
of T∞ if and only if there exists a complex number ξ such that

λ2 −
( 3

2(3− c2)
|ξ|2 + (3− c2)(22 + c2)

8

)
λ+ 3|ξ|2 + 27

4

(
2− c2

)
= 0.

This is the case if and only if

λ =
3|ξ|2

4(3− c2)
+
(3− c2)(22 + c2)

16
±1

4

( 9|ξ|4

3− c2
+
3(c2 − 10)

2
|ξ|2+225

4
−195

4
c2+

229

16
c4+

19

8
c6+

c8

16

) 1
2
.

Notice that the quantity in the square root of this expression is positive since its discriminant
with respect to |ξ|2 is −9c2/(3− c2)2. As a consequence, we obtain that

σess(Tc) = σ(T∞) =
[
τc,+∞

)
,

with τc as in (3.34). This completes the proof of Step 1.

Step 2. There exists a positive number Λ2, depending continuously on c, such that

Gc(u) ≥ Λ2

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
,

for any pair u ∈ X1(R) such that

⟨u,Qc⟩L2(R)2 = 0. (3.35)
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We start by improving the estimate in (3.31). Given a pair w ∈ X1(R), we check that∣∣∣∣⟨Tc(w), w⟩L2(R)2 −
3τ

2

∫
R

ηc
µc

(∂xw1)
2

∣∣∣∣ ≤ Ac

∫
R
(w2

1 + w2
2).

Here and in the sequel, Ac refers to a positive number, depending continuously on c. For
0 < τ < 1, we deduce that

⟨Tc(w), w⟩L2(R)2 ≥
(
1− τ

)
⟨Tc(w), w⟩L2(R)2 +

3τ

2

∫
R

ηc
µc

(∂xw1)
2 −Acτ

∫
R
(w2

1 + w2
2).

Since ηc/µc ≥ 1/(3− c2), we are led to

⟨Tc(w), w⟩L2(R)2 ≥
((

1− τ
)
Λ1 −Acτ

)∫
R
(w2

1 + w2
2) +

3τ

2(3− c2)

∫
R
(∂xw1)

2,

under condition (3.32). For τ small enough, this provides the lower bound

⟨Tc(w), w⟩L2(R)2 ≥ Ac

∫
R

(
(∂xw1)

2 + w2
1 + w2

2

)
, (3.36)

when w satis�es condition (3.32).

When the pair w depends on the pair u as in (3.28), we can express (3.36) in terms of u. The
left-hand side of (3.36) is exactly equal to Gc(u) by (3.29), whereas for the left-hand side, we
have ∫

R

(
(∂xw1)

2 + w2
1

)
=

∫
R
ηc

(
(∂xu1)

2 +
(
1 +

(∂xηc)
2

4ηc
− ∂xxηc

2ηc

)
u21

)
.

Since

1 +
(∂xηc)

2

4ηc
− ∂xxηc

2ηc
=

2 + c2

4
+ ηc ≥

1

2
,

by (3.23) and (3.24), we deduce that (3.36) may be written as

Gc(u) ≥ Ac

∫
R
ηc

(
(∂xu1)

2 +
1

2
u21

)
+Ac

∫
R
ηc

(
u2 −

c∂xηc
2µc(1− ηc)

∂xu1 −
c(∂xηc)

2

4µcηc(1− ηc)
u1

)2
.

At this stage, recall that, given two vectors a and b in an Hilbert space H, we have∥∥a− b
∥∥2
H

≥ τ
∥∥a∥∥2

H
− τ

1− τ

∥∥b∥∥2
H
,

for any 0 < τ < 1. In particular, this gives

Gc(u) ≥ Ac

∫
R
ηc

(
(∂xu1)

2 +
1

2
u21 + τu22

)
− τAc

1− τ

∫
R
ηc

( c∂xηc
2µc(1− ηc)

∂xu1 −
c(∂xηc)

2

4µcηc(1− ηc)
u1

)2
.

It then remains to choose τ small enough so that we can deduce from (5) that

Gc(u) ≥ Ac

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
, (3.37)

when w satis�es condition (3.32), i.e. when u is orthogonal to the pair

uc =
(
η2c −

c4η2c (∂xηc)
2

16µ2c(1− ηc)2
+ ∂x

( c4η3c (∂xηc)

8µ2c(1− ηc)2

)
,

c3η3c
4µc(1− ηc)

)
. (3.38)
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The last point to verify is that (3.37) remains true, decreasing possibly the value of Ac, when
we replace this orthogonality condition by condition (3.35). With this goal in mind, we remark
that

⟨uc, Qc⟩L2(R)2 ̸= 0.

Otherwise, we would deduce from (3.37) that

0 = Gc(Qc) ≥ Ac

∫
R
ηc
(
(∂xηc)

2 + η2c + v2c
)
> 0,

which is impossible. Moreover, the quantity ⟨uc, Qc⟩L2(R)2 depends continuously on c in view of
(3.38). We next consider a pair u which satis�es (3.35), and we denote λ the real number such
that u = λQc + u is orthogonal to uc. Since Qc belongs to the kernel of Gc, we deduce from
(3.37) that

Gc(u) = Gc(u) ≥ Ac

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
. (3.39)

On the other hand, since u satis�es (3.35), we have

λ =
⟨u, Qc⟩L2(R)2

∥Qc∥2L2(R)2
,

Using the Cauchy-Schwarz inequality, this leads to

λ2 ≤ Ac

(∫
R

(
ηc +

v2c
ηc

))(∫
R
ηc
(
u21 + u22

))
,

so that, by (5) and (3.39),
λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.39), we are led to∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
≤2

(
λ2
∫
R
ηc
(
(∂xηc)

2 + η2c + v2c
)
+

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
))

≤AcGc(u),

which completes the proof of Step 2.

Step 3. End of the proof.

We conclude the proof applying again the last argument in the proof of Step 2. We decompose
a pair u ∈ X(R), which satis�es the orthogonality condition in (43), as u = λQc + u, with
⟨u, Qc⟩L2(R)2 = 0. Since Qc belongs to the kernel of Gc, we deduce from Step 2 that

Gc(u) = Gc(u) ≥ Λ2

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
. (3.40)

Relying on the orthogonality condition in (43), we next compute

λ = −
⟨u, S∂cQc⟩L2(R)2

⟨Qc, S∂cQc⟩L2(R)2
.

Using the Cauchy-Schwarz inequality and invoking (41), we obtain

λ2 ≤ 1

4(2− c2)

(∫
R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
))(∫

R
ηc
(
u21 + u22

))
.
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In view of (5), we can check that

∂cηc(x) =
c√

2− c2
ηc(x)

(
x sinh

(√
2−c2x
2

)
cosh

(√
2−c2x
2

) − 2√
2− c2

)
,

while

∂cvc =
ηc

2(1− ηc)
+

c∂cηc
2(1− ηc)2

,

so that ∫
R

1

ηc

(
(∂cηc)

2 + (∂cvc)
2
)
≤ Ac.

As a consequence, we can derive from (3.40) that

λ2 ≤ AcGc(u) = AcGc(u).

Combining again with (3.40), we are led to∫
R
ηc
(
(∂xu1)

2 + u21 + u22
)
≤2

(
λ2
∫
R
ηc
(
(∂xηc)

2 + η2c + v2c
)
+

∫
R
ηc
(
(∂xu1)

2 + u21 + u22
))

≤AcGc(u).

It remains to recall that
ηc(x) ≥ Ace

−
√
2|x|,

by (5), to obtain (42). This completes the proof of Proposition 8.

3.4 Proof of Proposition 9

Combining inequality (3.1) with the de�nitions for u∗ in (34), and for Hc in (B.1), we know that
there exists a positive number Ak,c such that∫

R

((
∂kxu

∗
1(x, t)

)2
+
(
∂kxu

∗
2(x, t)

)2)
e2νc|x| dx ≤ Ak,c, (3.41)

for any k ∈ N and any t ∈ R. In view of (35) and (38), this is enough to guarantee the
di�erentiability with respect to time of the quantity

J ∗(t) :=
⟨
Mc∗(t)u

∗(·, t), u∗(·, t)
⟩
L2(R)2 ,

and to check that

d

dt

(
J ∗) =2

⟨
SMc∗u

∗,Hc∗(JSu
∗)
⟩
L2(R)2 + 2

⟨
SMc∗u

∗,Hc∗(JRc∗ε
∗)
⟩
L2(R)2

+ 2
(
(a∗)′ − c∗

)⟨
SMc∗u

∗,Hc∗(∂xε
∗)
⟩
L2(R)2 − 2

(
c∗
)′⟨
SMc∗u

∗,Hc∗(∂cQc∗)
⟩
L2(R)2

+
(
c∗
)′⟨
∂cMc∗u

∗, u∗
⟩
L2(R)2 + 2

(
c∗
)′⟨
Mc∗u

∗, S∂cHc∗(ε
∗)
⟩
L2(R)2 .

(3.42)

In particular, the proof of (44) reduces to estimate the six terms in the right-hand side of (3.42).
Concerning the �rst one, we derive from Proposition 8 the following estimate.

Step 1. There exists a positive number B1, depending only on c, such that

J ∗
1 (t) := 2

⟨
SMc∗u

∗,Hc∗(JSu
∗)
⟩
L2(R)2 ≥ B1

∫
R

[
(∂xu

∗
1)

2 + (u∗1)
2 + (u∗2)

2
]
(x, t)e−

√
2|x| dx, (3.43)

for any t ∈ R.
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Since the pair u∗ satis�es the orthogonality condition in (43) by (40), inequality (3.43) is exactly
(42), setting B1 = Λc.

For the second term, we can prove

Step 2. There exists a positive number B2, depending only on c, such that∣∣J ∗
2 (t)

∣∣ := 2
∣∣∣⟨SMc∗u

∗,Hc∗(JRc∗ε
∗)
⟩
L2(R)2

∣∣∣ ≤ B2

∥∥ε∗(·, t)∥∥ 1
2

X(R)
∥∥u∗(·, t)∥∥2

X(R), (3.44)

for any t ∈ R.

In view of (5), (22) and (38), we �rst notice that there exists a positive number Ac, depending
only on c, such that ∥∥Mc∗(t)

∥∥
L∞(R) ≤ Ac, (3.45)

for any t ∈ R. As a consequence, we can write∣∣J ∗
2 (t)

∣∣ ≤ Ac

∥∥u∗(·, t)∥∥
L2(R)2

∥∥Hc∗(JRc∗ε
∗)(·, t)

∥∥
L2(R)2 . (3.46)

Applying (3.11) to the last inequality in (3.12), we next check that∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)∥∥
L2(R)2

≤Ac

∥∥ε∗(·, t)∥∥
L2(R)2

(∥∥ε∗η(·, t)∥∥ 5
8

L2(R)

∥∥ε∗η(·, t)∥∥ 5
8

H15(R) +
∥∥ε∗(·, t)∥∥ 9

16

L2(R)2
∥∥ε∗(·, t)∥∥ 3

16

H63(R)2

)
,

so that by (22), (3.1) and (3.17), we have∥∥Hc∗(t)

(
JRc∗(t)ε

∗)(·, t)∥∥
L2(R)2 ≤ Ac

∥∥ε∗(·, t)∥∥ 1
2

L2(R)2
∥∥u∗(·, t)∥∥

X(R).

Estimate (3.44) follows combining with (3.46).

We now turn to the third term in the right-hand side of (3.42).

Step 3. There exists a positive number B3, depending only on c, such that∣∣J ∗
3 (t)

∣∣ := 2
∣∣(a∗)′ − c∗

∣∣ ∣∣∣⟨SMc∗u
∗,Hc∗(∂xε

∗)
⟩
L2(R)2

∣∣∣ ≤ B3

∥∥ε∗(·, t)∥∥ 1
2

X(R)
∥∥u∗(·, t)∥∥2

X(R), (3.47)

for any t ∈ R.

In view of (23) and (3.45), we have∣∣J ∗
3 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)∥∥
X(R)

∥∥u∗(·, t)∥∥
L2(R)2

∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2 , (3.48)

for any t ∈ R. Coming back to the de�nition for Hc in (B.1), we can write∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2 ≤ Ac

(∥∥ε∗η(·, t)∥∥H3(R) +
∥∥ε∗v(·, t)∥∥H1(R)

)
.

Hence, by (3.11) again,∥∥Hc∗(t)(∂xε
∗)(·, t)

∥∥
L2(R)2 ≤ Ac

∥∥ε∗η∥∥ 1
2

L2(R)2

(∥∥ε∗η(·, t)∥∥ 1
2

H7(R) +
∥∥ε∗v(·, t)∥∥ 1

2

H3(R)

)
.

Combining the latter inequality with (3.1), (3.17) and (3.48) yields estimate (3.47).

For the fourth term, we have
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Step 4. There exists a positive number B4, depending only on c, such that∣∣J ∗
4 (t)

∣∣ := 2
∣∣(c∗)′∣∣∣∣∣⟨SMc∗u

∗,Hc∗(∂cQc∗)
⟩
L2(R)2

∣∣∣ ≤ B4

∥∥ε∗(·, t)∥∥ 1
2

X(R)
∥∥u∗(·, t)∥∥2

X(R), (3.49)

for any t ∈ R.

Similarly, we deduce from (23) and (3.45) that∣∣J ∗
4 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)∥∥2
X(R)

∥∥u∗(·, t)∥∥
L2(R)2 .

Estimate (3.49) then appears as a consequence of (22) and (3.17).

The �fth term is estimated in a similar way.

Step 5. There exists a positive number B5, depending only on c, such that∣∣J ∗
5 (t)

∣∣ := ∣∣(c∗)′∣∣∣∣∣⟨∂cMc∗u
∗, u∗

⟩
L2(R)2

∣∣∣ ≤ B5

∥∥ε∗(·, t)∥∥ 1
2

X(R)
∥∥u∗(·, t)∥∥2

X(R), (3.50)

for any t ∈ R.

We derive again from (5) and (38) the existence of a positive number Ac, depending only on c,
such that ∥∥∂cMc∗(t)

∥∥
L∞(R) ≤ Ac,

for any t ∈ R. As a consequence of (23), we infer that∣∣J ∗
5 (t)

∣∣ ≤ Ac

∥∥ε∗(·, t)∥∥2
X(R)

∥∥u∗(·, t)∥∥2
L2(R)2 .

This provides (3.50), relying again on (22).

Finally, we infer from (22), (23), (3.17), (3.45), and the explicit formula for Hc∗ in (B.1) that

Step 6. There exists a positive number B6, depending only on c, such that∣∣J ∗
6 (t)

∣∣ := ∣∣(c∗)′∣∣∣∣∣⟨Mc∗u
∗, S∂cHc∗(ε

∗)
⟩
L2(R)2

∣∣∣ ≤ B6

∥∥ε∗(·, t)∥∥ 1
2

X(R)
∥∥u∗(·, t)∥∥2

X(R),

for any t ∈ R.

In order to conclude the proof of Proposition 9, it remains to combine the six previous steps to
obtain (44), with B∗ := max

{
1/B1, B2 +B3 +B4 +B5 +B6}.

3.5 Proof of Corollary 1

Corollary 1 is a consequence of Propositions 7 and 9. As a matter of fact, combining the two
estimates (36) and (44) with the de�nition of N(t), we obtain

d

dt

(
⟨N(t)u∗(·, t), u∗(·, t)⟩L2(R)2

)
≥
(2− c2

64
−A∗B∗e

√
2R∗
∥∥ε∗(·, t)∥∥ 1

2

X(R)

)∥∥u∗(·, t)∥∥2
X(R),

for any t ∈ R. Invoking (22), it remains to �x the parameter βc such that∥∥ε∗(·, t)∥∥ 1
2

X(R) ≤
2− c2

128A∗B∗e
√
2R∗

,

for any t ∈ R, in order to obtain (45). Since the map t 7→ ⟨N(t)u∗(·, t), u∗(·, t)⟩L2(R)2 is uniformly
bounded by (3.41) and (3.45), estimate (46) follows by integrating (45) from t = −∞ to t = +∞.
Finally, statement (47) is a direct consequence of (46).
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A On the regularity and smoothness of the Gross-Pitaevskii �ow

A.1 Continuity with respect to weak convergence in the energy space

It is shown in [43] (see also [18, 21, 4]) that the Gross-Pitaevskii equation is globally well-posed
in the spaces

X k(R) :=
{
ψ ∈ L∞(R), s.t. η := 1− |Ψ|2 ∈ L2(R) and ∂xψ ∈ Hk(R)

}
,

equipped with the metric structure provided by the distance

dk(ψ1, ψ2) :=
∥∥ψ1 − ψ2

∥∥
L∞(R) +

∥∥∂xψ1 − ∂xψ2

∥∥
Hk(R) +

∥∥η1 − η2
∥∥
L2(R),

where we have set, as above, η1 := 1− |Ψ1|2 and η2 := 1− |Ψ2|2.

Proposition A.1 ([43]). Let k ∈ N and Ψ0 ∈ X k(R). There exists a unique solution Ψ in

C0(R,X k(R)) to (GP) with initial data Ψ0. Moreover, the �ow map Ψ0 → Ψ(·, T ) is continuous
on X k(R) for any �xed T ∈ R, and the map t→ Ψ(·, t) belongs to C1(R,X k(R)) when Ψ0 belongs

to X k+2(R). Finally, the Ginzburg-Landau energy is conserved along the �ow, i.e.

E(Ψ(·, t)) = E(Ψ0), (A.1)

for any t ∈ R.

In order to establish the continuity of the Gross-Pitaevskii �ow with respect to some suitable
notion of weak convergence, it is helpful to enlarge slightly the range of function spaces in which
it is possible to solve the Cauchy problem for (GP). For 1/2 < s < 1, we de�ne the Zhidkov
spaces Zs(R) as

Zs(R) :=
{
ψ ∈ L∞(R), s.t. ∂xψ ∈ Hs−1(R)

}
,

and we endow them with the norm∥∥ψ∥∥Zs(R) :=
∥∥ψ∥∥

L∞(R) +
∥∥∂xψ∥∥Hs−1(R).

We then prove

Proposition A.2. Let 1/2 < s < 1 and Ψ0 ∈ Zs(R). There exists a unique maximal solution

Ψ ∈ C0((Tmin, Tmax),Zs(R)) to (GP) with initial datum Ψ0.

Proof. Proposition A.2 is essentially due to Gallo who has proved it in [18] when s ∈ N∗. Due
to the Sobolev embedding theorem of Hs(R) into L∞(R) for s > 1/2, the proof in [18] extends
to the case s > 1/2. As a consequence, we refer to [18] for a detailed proof.

In the framework provided by Proposition A.1, we can introduce a notion of weak convergence
for which the Gross-Pitaevskii �ow is continuous. We consider a sequence of initial conditions
Ψn,0 ∈ X (R) such that the energies E(Ψn,0) are uniformly bounded with respect to n. Invoking
the Rellich-Kondrachov theorem, there exists a function Ψ0 ∈ X (R) such that, going possibly to
a subsequence,

∂xΨn,0 ⇀ ∂xΨ0 in L2(R), 1− |Ψn,0|2 ⇀ 1− |Ψ0|2 in L2(R), (A.2)

and, for any compact subset K of R,

Ψn,0 → Ψ0 in L∞(K), (A.3)

as n → +∞. We claim that the convergences provided by (A.2) and (A.3) are conserved along
the Gross-Pitaevskii �ow.
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Proposition A.3. We consider a sequence (Ψn,0)n∈N ∈ X (R)N, and a function Ψ0 ∈ X (R) such
that assumptions (A.2) and (A.3) are satis�ed, and we denote Ψn, respectively Ψ, the unique

global solutions to (GP) with initial datum Ψn,0, respectively Ψ0, given by Proposition A.1. For

any �xed t ∈ R and any compact subset K of R, we have

Ψn(·, t) → Ψ(·, t) in L∞(K), (A.4)

when n→ +∞, as well as

∂xΨn(·, t)⇀ ∂xΨ(·, t) in L2(R), and 1− |Ψn(·, t)|2 ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.5)

Proof. The proof is standard. For sake of completeness, we recall some details.

As usual, we �rst bound suitably the functions Ψn and ηn := 1 − |Ψn|2. In view of the weak
convergences in assumption (A.2), there exists a positive constant M such that

E(Ψn,0) ≤M2,

for any n ∈ N. Since the energy E is conserved along the (GP) �ow by (A.1), we deduce that

∥∂xΨn(·, t)∥L2(R) ≤
√
2M, and ∥ηn(·, t)∥L2(R) ≤ 2M, (A.6)

for any n ∈ N and any t ∈ R. Invoking the Sobolev embedding theorem, we next write

∥Ψn(·, t)∥2L∞(R) ≤ 1 + ∥ηn(·, t)∥L∞(R) ≤ 1 + ∥ηn(·, t)∥
1
2

L2(R)∥∂xηn(·, t)∥
1
2

L2(R).

Since
∥∂xηn(·, t)∥L2(R) ≤ 2∥Ψn(·, t)∥L∞(R)∥∂xΨn(·, t)∥L2(R),

we obtain the uniform bounds

∥Ψn(·, t)∥L∞(R) ≤ KM , and ∥∂xηn(·, t)∥L2(R) ≤ KM , (A.7)

where KM is a positive number depending only on M . In particular, given a �xed positive
number T , we deduce that∫ T

0

∫
R
|∂xΨn(x, t)|2 dx dt ≤M2T, and

∫ T

0

∫
R
ηn(x, t)

2 dx dt ≤M2T. (A.8)

With bounds (A.7) and (A.8) at hand, we are in position to construct weak limits for the
functions Ψn and ηn. In view of (A.8), there exist two functions Φ1 ∈ L2(R × [0, T ]) and
N ∈ L2(R× [0, T ]) such that, up to a further subsequence,

∂xΨn ⇀ Φ1 in L2(R× [0, T ]), and ηn ⇀ N in L2(R× [0, T ]), (A.9)

when n→ ∞. Similarly, we can invoke (A.7) to exhibit a function Φ ∈ L∞(R× [0, T ]) such that,
up to a further subsequence,

Ψn
∗
⇀ Φ in L∞(R× [0, T ]), (A.10)

when n→ +∞. Combining with (A.9), we remark that Φ1 = ∂xΦ in the sense of distributions.

Our goal is now to check that the function Φ is solution to (GP). This requires to improve
the convergences in (A.9) and (A.10). With this goal in mind, we introduce a cut-o� function
χ ∈ C∞

c (R) such that χ ≡ 1 on [−1, 1] and χ ≡ 0 on (−∞, 2]∪ [2,+∞), and we set χp(·) := χ(·/p)
for any integer p ∈ N∗. In view of (A.6) and (A.8), the sequence (χpΨn)n∈N is bounded in
C0([0, T ],H1(R)). By the Rellich-Kondrachov theorem, the sets {χpΨn(·, t), n ∈ N} are relatively
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compact in H−1(R) for any �xed t ∈ [0, T ]. On the other hand, the function Ψn is solution to
(GP), so that its time derivative ∂tΨn belongs to C0([0, T ],H−1(R)) and satis�es

∥∂tΨn(·, t)∥H−1(R) ≤ ∥∂xΨn(·, t)∥L2(R) + ∥Ψn(·, t)∥L∞(R)∥ηn(·, t)∥L2(R) ≤ KM .

As a consequence, the functions χpΨn are equicontinuous in C0([0, T ], H−1(R)). Applying the
Arzela-Ascoli theorem and using the Cantor diagonal argument, we can �nd a further subsequence
(independent of p), such that, for each p ∈ N∗,

χpΨn → χpΦ in C0([0, T ],H−1(R)), (A.11)

as n→ +∞. Recalling that the functions χpΨn are uniformly bounded in C0([0, T ],H1(R)), we
deduce that the convergence in (A.11) also holds in the spaces C0([0, T ],Hs(R)) for any s < 1.
In particular, by the Sobolev embedding theorem, we obtain

χpΨn → χpΦ in C0([0, T ], C0(R)), (A.12)

as n→ +∞.

Such convergences are enough to establish that Φ is solution to (GP). Let h be a function in
C∞
c (R). Since the functions χpΨn are uniformly bounded in C0([0, T ], C0(R)), we check (for an
integer p such that supp(h) ⊂ [−p, p]) that

hηn(·, t) = h
(
1− χ2

p|Ψn(·, t)|2
)
→ h

(
1− χ2

p|Φ(·, t)|2
)
= h

(
1− |Φ(·, t)|2

)
in C0(R), (A.13)

as n → +∞, the convergence being uniform with respect to t ∈ [0, T ]. In view of (A.9), we
deduce that N = 1− |Φ|2. Similarly, we compute

hΨn(·, t) = hχpΨn(·, t) → hχpΦ(·, t) = hΦ(·, t) in C0(R), (A.14)

as n→ +∞. In view of (A.9), we infer that

hηnΨn → h(1− |Φ|2)Φ in L2(R× [0, T ]).

Going back to (A.9) and (A.10), we recall that

i∂tΨn → i∂tΦ in D′(R× [0, T ]), and ∂2xxΨn → ∂2xxΦ in D′(R× [0, T ]),

as n→ +∞, so that it remains to take the limit n→ +∞ in the expression∫ T

0

∫
R

(
i∂tΨn + ∂2xxΨn + ηnΨn

)
h = 0,

where h ∈ C∞
c (R × [0, T ]), in order to establish that Φ is solution to (GP) in the sense of

distributions. Moreover, we infer from (A.3) and (A.14) that Φ(·, 0) = Ψ0.

In order to prove that the function Φ coincides with the solution Ψ in Proposition A.3, it is
su�cient, in view of the uniqueness result in Proposition A.2, to establish the

Claim. The function Φ belongs to C0([0, T ],Zs(R)) for any 1/2 < s < 1.

Proof of the claim. Let t ∈ [0, T ] be �xed. We deduce from (A.6), (A.11) and (A.13) that, up to
a subsequence (depending on t),

∂xΨn(·, t)⇀ ∂xΦ(·, t) in L2(R), and ηn(·, t)⇀ 1− |Φ(·, t)|2 in L2(R), (A.15)
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as n→ +∞. We also know that∫
R
|∂xΦ(·, t)|2 ≤ 2M2, and

∫
R

(
1− |Φ(·, t)|2

)2 ≤ 4M2. (A.16)

In particular, the maps ∂xΦ and 1 − |Φ|2 belong to L∞([0, T ], L2(R)), respectively L∞([0, T ],
H1(R)). Since

i∂t
(
∂xΦ

)
= −∂3xxxΦ− ∂x(ηΦ),

the derivative ∂xΦ actually belongs toW 1,∞([0, T ],H−2(R)). Hence, it is continuous with values
into H−2(R). By (A.16), it remains continuous with values into Hs(R) for any −2 ≤ s < 0.
Similarly, the functions ηn solve the equations

∂tηn = 2∂x
(
⟨i∂xΨn,Ψn⟩C

)
. (A.17)

Invoking (A.9) and (A.14), we know that

h⟨i∂xΨn,Ψn⟩C → h⟨i∂xΦ,Φ⟩C in L2(R× [0, T ]),

for any h ∈ C∞
c (R). Using (A.13) to take the limit n→ +∞ into (A.17), we are led to

∂t
(
1− |Φ|2

)
= 2∂x

(
⟨i∂xΦ,Φ⟩C

)
,

in the sense of distributions. We deduce as above that the map 1− |Φ|2 belongs to W 1,∞([0, T ],
H−1(R)), therefore that it is continuous with values into H−1(R), and �nally with values into
Hs(R) for any −1 ≤ s < 1. At this stage, it su�ces to apply the Sobolev embedding theorem
to guarantee that Φ is also in C0([0, T ], L∞(R)), and, as a consequence, in C0([0, T ],Zs(R)) for
any 1/2 < s < 1, which proves the claim.

By Proposition A.2, the maps Φ and Ψ are therefore two identical solutions to (GP) in
C0([0, T ],Zs(R)) for 1/2 < s < 1. Arguing as in (A.15), we conclude that, given any �xed
number t ∈ [0, T ], we have, up to a subsequence (depending on t),

∂xΨn ⇀ ∂xΨ(·, t) in L2(R), and ηn ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.18)

Given any compact subset K of R, we also deduce from (A.12) that

Ψn(·, t) → Ψ(·, t) in L∞(K),

as n→ +∞.

In order to complete the proof of Proposition A.3, we now argue by contradiction assuming the
existence of a positive number T , a function h ∈ L2(R) and a positive number δ such that we
have ∣∣∣∣ ∫

R

(
∂xΨφ(n)(x, T )− ∂xΨ(x, T )

)
h(x) dx

∣∣∣∣ > δ,

for a subsequence (Ψφ(n))n∈N. Up to the choice of a further subsequence (possibly depending
on T ), this in contradiction with (A.18). Here, we have made the choice to deny one of the
weak convergences in (A.5), but a contradiction identically appears when (A.4) or the other
convergence in (A.5) is alternatively denied. Since the proof extends with no change to the case
where T is negative, this concludes the proof of Proposition A.3.
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A natural framework for solving the hydrodynamical form of the Gross-Pitaevskii equation is
provided by the functions spaces

NVk(R) :=
{
(η, v) ∈ Xk(R), s.t. max

x∈R
η(x) < 1

}
,

where we have set
Xk(R) := Hk+1(R)×Hk(R).

A counter-part of Proposition A.1 in terms of (HGP) is stated as follows.

Proposition A.4 ([35]). Let k ∈ N and (η0, v0) ∈ NVk(R). There exists a maximal time

Tmax > 0 and a unique solution (η, v) ∈ C0([0, Tmax),NVk(R)) to (HGP) with initial datum

(η0, v0). The maximal time Tmax is continuous with respect to the initial datum (η0, v0), and is

characterized by

lim
t→Tmax

max
x∈R

η(x, t) = 1 if Tmax < +∞.

Moreover, the energy E and the momentum P are constant along the �ow.

In this setting, it is possible to establish the following version of the weak continuity of the
hydrodynamical �ow.

Proposition A.5. We consider a sequence (ηn,0, vn,0)n∈N ∈ NV(R)N, and a pair (η0, v0) ∈
NV(R) such that

ηn,0 ⇀ η0 in H1(R), and vn,0 ⇀ v0 in L2(R), (A.19)

as n → +∞. We denote by (ηn, vn) the unique solutions to (HGP) with initial data (ηn,0, vn,0)
given by Proposition A.4, and we assume that there exists a positive number T such that the

solutions (ηn, vn) are de�ned on [−T, T ], and satisfy the condition

sup
n∈N

sup
t∈[−T,T ]

max
x∈R

ηn(x, t) ≤ 1− σ, (A.20)

for a given positive number σ. Then, the unique solution (η, v) to (HGP) with initial data (η0, v0)
is also de�ned on [−T, T ], and for any t ∈ [−T, T ], we have

ηn(t)⇀ η(t) in H1(R), and vn(t)⇀ v(t) in L2(R), (A.21)

as n→ +∞.

Proof. The proof relies on applying Proposition A.3 to the solutions Ψn and Ψ to (GP) with
initial data

Ψn,0 :=
√

1− ηn,0e
iφn,0 , and Ψ0 :=

√
1− η0e

iφ0 ,

where we have set

φn,0(x) :=

∫ x

0
vn,0(y) dy, and φ0(x) :=

∫ x

0
v0(y) dy. (A.22)

The weak convergences in (A.21) then follow from the convergences in (A.4) and (A.5).

With this goal in mind, we �rst remark that the map φ0 in (A.22) de�nes a continuous function
with derivative v0 in L2(R), while

√
1− η0 de�nes a function in H1(R). As a consequence, the

function Ψ0, and similarly the functions Ψn,0, are well-de�ned on R and belong to X (R), with
derivatives

∂xΨ0 =
(
− ∂xη0

2
√
1− η0

+ i
√

1− η0v0

)
eiφ0 , ∂xΨn,0 =

(
− ∂xηn,0

2
√
1− ηn,0

+ i
√

1− ηn,0vn,0

)
eiφn,0 .

(A.23)
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We now check the �rst assumption in (A.2), as well as (A.3). The second assumption in (A.2)
is already included in (A.19). In view of (A.22), we write

φn,0(x)− φ0(x) = ⟨vn,0 − v0, 1[0,x]⟩L2(R),

for any x ∈ R, so that, by (A.19),
φn,0(x) → φ0(x),

as n→ +∞. On the other hand, it again follows from (A.22) that∣∣φn,0(x)− φn,0(y)
∣∣ ≤ |x− y|

1
2 ∥vn,0∥L2(R),

for any (x, y) ∈ R2. Given a compact subset K of R, we deduce from the Ascoli-Arzela theorem
and the Cantor diagonal argument that, passing to a subsequence independent of K, we have

φn,0 → φ0 in L∞(K),

as n→ +∞. In particular,
eiφn,0 → eiφ0 in L∞(K), (A.24)

as n→ +∞. Similarly, if follows from (A.19) and the Rellich-Kondrachov theorem that, up to a
further subsequence, √

1− ηn,0 →
√

1− η0 in L∞(K), (A.25)

as n→ +∞. Since the maps eiφn,0 are uniformly bounded by 1, we conclude that

Ψn,0 → Ψ0 in L∞(K),

as n→ +∞.

The proof of the �rst assumption in (A.2) is similar. We deduce from (A.20) and (A.25) that√
1− ηn,0 ≥

√
σ, and

√
1− η0 ≥

√
σ on R.

Combining (A.23) with the convergences in (A.19), (A.24) and (A.25), we are led to

∂xΨn,0 ⇀ ∂xΨ0 in L2(R),

as n→ +∞.

As a consequence, we can apply Proposition A.3 to the solutions Ψn and Ψ to (GP) with initial
data Ψn,0, respectively Ψ0. Given any number t ∈ R, we obtain in the limit n→ +∞,

Ψn(·, t) → Ψ(·, t) in L∞(K), (A.26)

for any compact subset K of R, as well as

∂xΨn(·, t)⇀ ∂xΨ(·, t) in L2(R), and 1− |Ψn(·, t)|2 ⇀ 1− |Ψ(·, t)|2 in L2(R). (A.27)

Setting
η̃n := 1− |Ψn|2, and η̃ := 1− |Ψ|2,

we infer similarly from (A.26), (A.27) and the identities ∂xη̃(n) = −2⟨Ψ(n), ∂xΨ(n)⟩C that

η̃n(·, t)⇀ η̃(·, t) in H1(R), (A.28)

as n → +∞. In order to derive the �rst convergence in (A.21), it remains to check that the
functions η̃n and η̃ are equal to ηn, respectively η. This can be done by invoking the uniqueness
result in Proposition A.4 for the solutions to (HGP).
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With this goal in mind, we �rst derive from the Sobolev embedding theorem that

1− |ψp|2 → 1− |ψ|2 in L∞(R),

when ψp → ψ in X (R) as p → +∞. Since ηn,0 satis�es (A.20), and Ψn is continuous from R to
X (R), we can exhibit a number τn ∈ (0, T ), depending possibly on n, such that

sup
t∈[−τn,τn]

max
x∈R

η̃n(x, t) ≤ 1− σ

2
. (A.29)

As a consequence, we can de�ne a function ṽn : R× [−τn, τn] → R according to the expression

ṽn =
⟨iΨn, ∂xΨn⟩C
1− |Ψn|2

.

Since Ψn is in C0([−τn, τn], L∞(R)), the function ṽn is continuous on [−τn, τn] with values into
L2(R). Similarly, η̃n is continuous on [−τn, τn] with values in H1(R). In view of (A.29), we
conclude that the pair (η̃n, ṽn) belongs to C0([−τn, τn],NV(R)). Moreover, the map Ψn being a
solution to (GP), the pair (η̃n, ṽn) solves (HGP) in the sense of distributions for an initial data
equal to (ηn,0, vn,0). As a conclusion, this pair coincides with the solution (ηn, vn) on [−τn, τn].
Using a standard connectedness argument, we derive that the function vn is well-de�ned in
C0([−T, T ], L∞(R)), and that

(η̃n(x, t), ṽn(x, t)) = (ηn(x, t), vn(x, t)),

for any x ∈ R and t ∈ [−T, T ].
Due to (A.25), one can rely on the same approach to establish that the function

ṽ =
⟨iΨ, ∂xΨ⟩C
1− |Ψ|2

,

is well-de�ned in C0([−T, T ], L∞(R)), and that

(η̃(x, t), ṽ(x, t)) = (η(x, t), v(x, t)),

for any x ∈ R and any t ∈ [−T, T ]. The �rst convergence in (A.21) is then exactly (A.28).
Concerning the second one, we deduce from (A.20), (A.26) and (A.27) that

⟨iΨn, ∂xΨn⟩C
1− |Ψn|2

⇀
⟨iΨ, ∂xΨ⟩C
1− |Ψ|2

in L2(R),

as n→ +∞. This is exactly the desired convergence.

However, the two convergences are only available for a subsequence, so that we have to argue
by contradiction as in the proof of Proposition A.3 to conclude the proof of Proposition A.5.

A.1.1 Proof of Proposition 1

In order to establish (26), we apply Proposition A.5. Relying on assumption (15) and the explicit
formula for Qc(tn) in (5), we check that

Qc(tn) → Qc∗0
in X(R),

as n→ +∞. Combining with (14), we are led to(
η(·+ a(tn), tn), v(·+ a(tn), tn)

)
⇀ ε∗0 +Qc∗0

in X(R),
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as n → +∞. The weak convergence in (26) then appears as a direct consequence of (A.21)
since t 7→ (η(· + a(tn), tn + t), v(· + a(tn), tn + t)) and (η∗, v∗) are the solutions to (HGP) with
initial data (η(·+ a(tn), tn), v(·+ a(tn), tn)), respectively ε

∗
0 +Qc∗0

, and since assumption (A.20)
is satis�ed in view of (7).

Concerning (27), we rely on (8) to claim that the map t 7→ c(t) is bounded on R. We next
combine (8) and (9) to show that a′ is a bounded function on R. As a consequence, the sequences
(a(tn+t)−a(tn))n∈N and (c(tn+t))n∈N are bounded, so that the proof of (27) reduces to establish
that the unique possible accumulation points for these sequences are a∗(t), respectively c∗(t).

In order to derive this further property, we assume that, up to a possible subsequence, we have

a(tn + t)− a(tn) → α, and c(tn + t) → σ, (A.30)

as n→ +∞. Given a function ϕ ∈ H1(R), we next write⟨
η(·+ a(tn + t), tn + t), ϕ

⟩
H1(R) =

⟨
η(·+ a(tn), tn + t), ϕ(· − a(tn + t) + a(tn))− ϕ(· − α)

⟩
H1(R)

+
⟨
η(·+ a(tn), tn + t), ϕ(· − α)

⟩
H1(R).

Combining (26) and (A.30) with the well-known fact that

ϕ(·+ h) → ϕ in H1(R),

when h→ 0, we deduce that

η(·+ a(tn + t), tn + t)⇀ η∗(·+ α, t) in H1(R),

as n→ +∞. Similarly, we have

v(·+ a(tn + t), tn + t)⇀ v∗(·+ α, t) in L2(R).

Since
Qc(tn+t) → Qσ in X(R),

as n→ +∞ by (A.30), we also obtain

ε(·, tn + t)⇀
(
η∗(·+ α, t), v∗(·+ α, t)

)
−Qσ in X(R), (A.31)

as n→ +∞.

At this stage, we again rely on the second convergence in (A.30) to prove that

∂xQc(tn+t) → ∂xQσ in L2(R)2,

as n → +∞, and the similar convergence for P ′(Qc(tn+t)). With (A.31) at hand, this is enough
to take the limit n→ +∞ in the two orthogonality conditions in (6) in order to get the identities⟨

(η∗(·+ α, t), v∗(·+ α, t))−Qσ, ∂xQσ

⟩
L2(R)2 = P ′(Qσ)

(
(η∗(·+ α, t), v ∗ (·+ α, t))−Qσ

)
= 0.

Using the uniqueness of the parameters α∗(t) and c∗(t) in (20), we deduce that

α = a∗(t), and σ = c∗(t), (A.32)

which is enough to complete the proof of (27). Convergence (28) follows combining (20) with
(A.31) and (A.32).
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A.2 Smoothing properties for space localized solutions

We consider a solution u ∈ C0(R, L2(R)) to the inhomogeneous linear Schrödinger equation (LS),
with F ∈ L2(R, L2(R)), and we assume that∫ T

−T

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞, (A.33)

for any positive number T . Our goal is to establish that the exponential decay for u and F
in (A.33) induces a smoothing e�ect on u in such a way that ∂xu belongs to L2

loc(R × R). In
order to derive this e�ect, we rely on the following virial type identity. We refer to the work by
Escauriaza, Kenig, Ponce and Vega [17] for useful extensions in related contexts.

Lemma A.1. Let u be a solution in C0(R,H1(R)) to (LS), with F ∈ L2(R,H1(R)). We consider

two real numbers a < b, a function χ ∈ C2(R) such that χ(a) = χ(b) = 0, and a bounded function
Φ ∈ C4(R), with bounded derivatives. Then, we have

4

∫ b

a

∫
R
|∂xu(x, t)|2Φ′′(x)χ(t) dx dt =

∫
R

(
|u(x, a)|2χ′(a)− |u(x, b)|2χ′(b)

)
Φ(x) dx

+

∫ b

a

∫
R
|u(x, t)|2

(
Φ(x)χ′′(t) + Φ(4)(x)χ(t)

)
dx dt+ 2

∫ b

a

∫
R
⟨F (x, t), i u(x, t)⟩CΦ(x)χ′(t) dx dt

− 2

∫ b

a

∫
R
⟨F (x, t), u(x, t)⟩CΦ′′(x)χ(t) dx dt− 4

∫ b

a

∫
R
⟨F (x, t), ∂xu(x, t)⟩CΦ′(x)χ(t) dx dt.

(A.34)

Proof. We introduce the map Ξ given by

Ξ(t) =

∫
R
|u(x, t)|2Φ(x) dx,

for any t ∈ R. When u is a smooth solution to (LS), we are allowed to compute

Ξ′(t) = 2

∫
R
⟨F (x, t), iu(x, t)⟩CΦ(x) dx+ 2

∫
R
⟨∂xu(x, t), iu(x, t)⟩CΦ′(x) dx,

as well as

Ξ′′(t) = 2∂t

(∫
R
⟨F (x, t), iu(x, t)⟩CΦ(x) dx

)
+ 4

∫
R
⟨F (x, t), ∂xu(x, t)⟩CΦ′(x) dx

+ 2

∫
R
⟨F (x, t), u(x, t)⟩CΦ′′(x) dx+ 4

∫
R
|∂xu(x, t)|2Φ′′(x) dx−

∫
R
|u(x, t)|2Φ(4)(x) dx.

(A.35)

Formula (A.34) follows by writing the identity∫ b

a
Ξ′′(t)χ(t) dt = −Ξ(b)χ′(b) + Ξ(a)χ′(a) +

∫ b

a
Ξ(t)χ′′(t) dt,

and integrating by parts (with respect to t) the �rst integral in the right-hand side of (A.35).

When u is only in C0(R,H1(R)), we introduce a sequence of smooth functions (um,a)m∈N and
(Fm)m∈N such that

um,a → u(·, a) in H1(R), and Fm → F in L2(R,H1(R)), (A.36)
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as m→ +∞. We denote by um the unique solution to (LS), in which F is replaced by Fm, with
um(·, a) = um,a. Since um is a smooth solution to (LS), identity (A.34) holds for the functions
um and Fm. On the other hand, we can deduce from the convergences in (A.36) applying an
energy method to (LS) that

um → u in C0(R,H1(R)),

when m → +∞. Combining with (A.36) and taking the limit m → +∞, we obtain identity
(A.34) for the functions u and F .

A.2.1 Proof of Proposition 5

We apply Lemma A.1 with a = −T − 1 and b = T + 1, and for a function χ ∈ C2
c (R, [0, 1]), with

compact support in [−T − 1, T + 1], and such that χ = 1 on [−T, T ].
Concerning the choice of the function Φ, we would like to set Φ(x) = eλx for any x ∈ R. However,
this function is not bounded, as well as its derivatives. In order to by-pass this di�culty, we
introduce a function ϕ ∈ C∞(R, [0, 1]) with compact support in [−2, 2] and such that ϕ = 1 on
[−1, 1], and we set

ϕn(x) = ϕ
(x
n

)
,

for any n ∈ N∗ and any x ∈ R. We then apply Lemma A.1 to the function

Φn(x) = ϕn(x)e
λx,

which is bounded, with bounded derivatives.

At this stage, we have to face a second di�culty. Lemma A.1 is available for functions u and
F in C0(R,H1(R)), respectively L2(R,H1(R)), but we would like to apply it when u and F are
only in C0(R, L2(R)), respectively L2(R, L2(R)). As a consequence, we �rst mollify the functions
u and F by introducing a smooth function µ ∈ C∞

c (R × R), with compact support in [−1, 1]2

and such that
∫
R2 µ = 1, and by setting

um = u ⋆ µm, and Fm = F ⋆ µm, (A.37)

with µm(x, t) = m2µ(mx,mt) for any m ∈ N and any (x, t) ∈ R2. In a second step, we will
complete the proof by taking the limit m→ +∞.

Since F is in L2(R, L2(R)), we �rst deduce from (A.37) and the Young inequality that Fm

belongs to L2(R,H1(R)), with the bounds

∥∂ℓxFm∥L2(R,L2(R)) ≤ mℓ∥F∥L2(R,L2(R))∥∂ℓxµ∥L1(R2),

for ℓ ∈ {0, 1}. Similarly, we compute∫
R

∣∣∂ℓxum(x, t)− ∂ℓxum(x, t0)
∣∣2dx

≤ m2ℓ∥∂ℓxµ∥L1(R2)

∫ 1

−1

∫ 1

−1

∥∥∥u(·, t− τ

m

)
− u
(
·, t0 −

τ

m

)∥∥∥2
L2(R)

|∂ℓxµ(τ)| dτ,

so that um belongs to C0(R,H1(R)), with the bound

∥∂ℓxum∥C0([−T−1,T+1],L2(R)) ≤ mℓ∥u∥C0([−T−1,T+1],L2(R))∥∂ℓxµ∥L1(R2),

41



which can be derived using the same arguments. As a consequence, we are in position to apply
Lemma A.1 to obtain the identity

4

∫
R

∫
R
|∂xum(x, t)|2

(
ϕn(x)e

λx
)′′
χ(t) dx dt

=2

∫
R

∫
R
⟨Fm(x, t), i um(x, t)⟩C ϕn(x)eλxχ′(t) dx dt

− 2

∫
R

∫
R
⟨Fm(x, t), um(x, t)⟩C

(
ϕn(x)e

λx
)′′
χ(t) dx dt

− 4

∫
R

∫
R
⟨Fm(x, t), ∂xum(x, t)⟩C

(
ϕn(x)e

λx
)′
χ(t) dx dt

+

∫
R

∫
R
|um(x, t)|2

(
ϕn(x)e

λxχ′′(t) +
(
ϕn(x)e

λx
)(4)

χ(t)
)
dx dt.

(A.38)

In order to take the limit n→ +∞, we �rst combine (A.33) with (A.37) to obtain the bound∫ T+1

−T−1

∫
R

(
|∂ℓxum(x, t)|2 + |∂ℓxFm(x, t)|2

)
eλx dx dt

≤ m2ℓ

(∫
R

∫
R
|∂ℓxµ(x, t)|e

λx
2 dx dt

)2

×
∫ T+2

−T−2

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eλx dx dt < +∞,

for ℓ ∈ {0, 1}. It follows that all the integrals in (A.38) can be written under the form

In(k,G) =

∫ T+1

−T−1

∫
R
G(x, t)ϕ(k)n (x) dx dt,

with G ∈ L1([−T − 1, T + 1], L1(R)) and 0 ≤ k ≤ 4. Since

In(k,G) → δk,0

∫ T+1

−T−1

∫
R
G(x, t) dx dt,

as n→ +∞ by the dominated convergence theorem, we obtain in the limit n→ +∞,

4λ2
∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt =2

∫ T+1

−T−1

∫
R
⟨Fm(x, t), i um(x, t)⟩C eλxχ′(t) dx dt

− 2λ2
∫ T+1

−T−1

∫
R
⟨Fm(x, t), um(x, t)⟩C eλxχ(t) dx dt

− 4λ

∫ T+1

−T−1

∫
R
⟨Fm(x, t), ∂xum(x, t)⟩C eλxχ(t) dx dt

+

∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx

(
χ′′(t) + λ4χ(t)

)
dx dt.

(A.39)

We now use the inequality 2αβ ≤ α2 + β2 to write∣∣∣∣2 ∫ T+1

−T−1

∫
R
⟨Fm(x, t), i um(x, t)⟩C eλxχ′(t) dx dt

∣∣∣∣
≤ K1

(∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx dx dt+

∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt

)
,

(A.40)
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with K1 := ∥χ′∥L∞(R). Similarly, we have∣∣∣∣2 ∫ T+1

−T−1

∫
R

(
2λ⟨Fm(x, t), ∂xum(x, t)⟩C + λ2⟨Fm(x, t), um(x, t)⟩C

)
eλxχ(t) dx dt

∣∣∣∣
≤λ2

∫ T+1

−T−1

∫
R
|um(x, t)|2 eλx dx dt+ 2λ2

∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt

+
(
2 + λ2

) ∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt.

Combining with (A.39) and (A.40), we obtain the inequality

2λ2
∫ T+1

−T−1

∫
R
|∂xum(x, t)|2 eλxχ(t) dx dt ≤

(
K1 +K2 + λ2 + λ4

) ∫ T+1

−T−1

∫
R
|um(x, t)|2eλx dx dt

+
(
K1 + λ2 + 2

) ∫ T+1

−T−1

∫
R
|Fm(x, t)|2 eλx dx dt,

with K2 := ∥χ′′∥L∞(R). At this stage, we rely on the properties of the function χ to obtain the
inequality 2

2λ2
∫ T

−T

∫
R
|∂xum(x, t)|2eλx dx dt ≤ Kλ

∫ T+1

−T−1

∫
R

(
|um(x, t)|2 + |Fm(x, t)|2

)
eλx dx dt, (A.41)

for some positive constant Kλ, depending only on λ.

In order to conclude the proof, we �nally consider the limit m → +∞. Using the linearity of
(LS), we can transform (A.41) into

2λ2
∫ T

−T

∫
R
|∂xum(x, t)− ∂xup(x, t)|2 eλx dx dt

≤ Kλ

∫ T+1

−T−1

∫
R

(
|um(x, t)− up(x, t)|2 + |Fm(x, t)− Fp(x, t)|2

)
eλx dx dt,

(A.42)

for any (m, p) ∈ (N∗)2. On the other hand, we can check that∫ T+1

−T−1

∫
R
|um(x, t)− u(x, t)|2 eλx dx dt

≤ 4∥µ∥2L1(R2) sup
|s|≤1,|y|≤1

∫ T+1

−T−1

∫
R

∣∣∣u(x− y

m
, t− s

m

)
− u(x, t)

∣∣∣2 eλx dx dt.
Setting v(x, t) = u(x, t)e

λx
2 , we observe that∫ T+1

−T−1

∫
R

∣∣∣u(x− y

m
, t− s

m

)
− u(x, t)

∣∣∣2 eλx dx dt
≤
∫ T+1

−T−1

∫
R

(
|v(x, t)|2

∣∣∣e λy
2m − 1

∣∣∣2 + ∣∣∣v(x− y

m
, t− s

m

)
− v(x, t)

∣∣∣2eλy
m

)
dx dt.

Since v ∈ L2([−T − 2, T + 2], L2(R)) by (A.33), we obtain the convergence∫ T+1

−T−1

∫
R
|um(x, t)− u(x, t)|2 eλx dx dt→ 0,

2The choice of χ can indeed be made so that K1 and K2 are independent of T .

43



as m→ +∞. Due to (A.33) again, similar convergence holds for the functions Fm and F .

In particular, we infer from (A.42) that the functions (x, t) 7→ ∂xum(x, t)e
λx
2 form a Cauchy

sequence in L2([−T, T ], L2(R)). In view of (A.37), their limit in the sense of distributions is the

map (x, t) 7→ ∂xu(x, t)e
λx
2 . As a consequence, this map belongs to L2([−T, T ], L2(R)), with∫ T

−T

∫
R
|∂xum(x, t)− ∂xu(x, t)|2 eλx dx dt→ 0,

as m→ +∞. It is then enough to take the limit m→ +∞ into (A.41) to obtain inequality (31).
This completes the proof of Proposition 5.

Remark. Inequalities similar in spirit to (31) can be obtained with similar proofs replacing the
weight function eλx by eϕ where ϕ : R → R is a smooth function with bounded derivatives and
such that ϕ′′ + (ϕ′)2 is bounded from below on R. In those cases, we obtain inequalities of the
form ∫ T

−T

∫
R
|∂xu(x, t)|2eϕ(x) dx dt ≤ Kϕ

∫ T+1

−T−1

∫
R

(
|u(x, t)|2 + |F (x, t)|2

)
eϕ(x) dx dt,

where Kϕ is a positive constant depending only on ϕ.

A.2.2 Proof of Proposition 6

We denote by Ψ∗ ∈ C(R,X (R)) a solution (uniquely determined up to a constant phase shift)
to (GP) corresponding to the solution (η∗, v∗) to (HGP). Formally, we may di�erentiate (GP) k
times with respect to the space variable and write the resulting equation as

i∂t
(
∂kxΨ

∗)+ ∂xx
(
∂kxΨ

∗) = Rk(Ψ
∗), (A.43)

where, in view of the cubic nature of (GP),∣∣Rk(Ψ
∗)
∣∣ ≤ |∂kxΨ∗|+

∑
α≤β≤γ

α+β+γ=k

Kα,β,γ |∂αxΨ∗| |∂βxΨ∗| |∂γxΨ∗|. (A.44)

In particular, our strategy to establish Proposition 6 consists in applying inductively Proposition
5 to the derivatives ∂kxΨ

∗ in order to improve their smoothness properties, and then translate
the resulting properties in terms of the pair (η∗, v∗). As a consequence, we split the proof into
four steps.

Step 1. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that∫ t+1

t

∫
R

∣∣∂kxΨ∗(x+ a∗(t), s)
∣∣2e2νc|x| dx ds ≤ Ak,c, (A.45)

for any t ∈ R.

The proof is by induction on k ≥ 1. More precisely, we are going to prove by induction that
(A.45) and ∫ t+1

t

∫
R

∣∣Rk(Ψ
∗)(x+ a∗(t), s)

∣∣2e2νc|x| dx ds ≤ Ak,c, (A.46)

hold simultaneously for any t ∈ R. Notice that (A.45) implies that ∂kxΨ
∗ ∈ L2

loc(R, L2(R)), while
(A.46) implies that Rk(Ψ

∗) ∈ L2
loc(R, L2(R)). Therefore, if (A.45) and (A.46) are established for
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some k ≥ 1, then (A.43) can be justi�ed by a standard approximation procedure, so that we are
in position to apply Proposition 5 to (suitable translates of) ∂kxΨ

∗.

For k = 1, recall that

|∂xΨ∗|2 = (∂xη
∗)2

4(1− η∗)
+ (1− η∗)(v∗)2.

It follows that
1

Ac
|∂xΨ∗|2 ≤ (∂xη

∗)2 + (v∗)2 ≤ Ac|∂xΨ∗|2,

where the constant Ac, here as in the sequel, depends only on c. It then follows from Proposition
4 that (A.45) and (A.46) are satis�ed. Indeed, since

|R1(Ψ
∗)| ≤ A|∂xΨ∗|

(
1 + |Ψ∗|2

)
,

we have∣∣R1(Ψ
∗)(x+ a∗(t), s)

∣∣2e2νc|x| ≤ A2|∂xΨ∗(x+ a∗(s), s)|2e2νc(|a∗(t)−a∗(s)|+|x|)(1 + ∥Ψ∗∥2L∞(R)
)2
,

and we may rely on Proposition 4, and the fact that |a∗(t)− a∗(s)| is bounded independently of
t for s ∈ [t, t+ 1].

Assume next that (A.45) and (A.46) are satis�ed for any integer k ≤ k0 and any t ∈ R. We apply
Proposition 5 with u := ∂k0x Ψ∗(· + a∗(t), · − (t + 1/2)), T := 1/2 and successively λ := ±2νc.
In view of (A.43), (A.45), (A.46), and the fact that |a∗(t) − a∗(s)| is uniformly bounded for
s ∈ [t− 1, t+ 2], this yields∫ t+1

t

∫
R
|∂k0+1

x Ψ∗(x+ a∗(t), s)|2e2νc|x| dx ds ≤
AcAk0,cK2νc

4ν2c
, (A.47)

so that (A.45) is satis�ed for k = k0 + 1, if we set Ak0+1,c = AcAk0,cK2νc/4ν
2
c .

We now turn to (A.46) which we wish to establish for k = k0 + 1. First notice that the linear
term in the right-hand side is already bounded by (A.47), so that we only have to handle with
the cubic terms. Notice also that we have by (A.43), (A.45) and (A.46),

∂jxΨ
∗ ∈ L2

loc(R,H2(R)), and ∂jxΨ
∗ ∈ H1

loc(R, L2(R)),

for any 1 ≤ j < k0, with bounds depending only on k0 + 1 and c on any time interval of length
1. By interpolation, we obtain similar bounds for ∂jxΨ∗ ∈ Hs

loc(R,H2−2s(R)) for any 0 ≤ s ≤ 1.
Taking for instance s = 2/3 and using the Sobolev embedding theorem, we obtain a global bound
for ∂jxΨ∗ in L∞(R× R). Since the latter also holds for j = 0, we thus have∥∥∂jxΨ∗∥∥

L∞(R×R) ≤ Ak0+1,c, (A.48)

for any 0 ≤ j < k0, where the value of Ak0+1,c possibly needs to be increased with respect to its
prior value, but depending only on k0 + 1 and c.

In order to estimate the sum in (A.44), we next distinguish two cases according to the possible
values of α, β and γ.

Case 1. If β < k0, then∫ t+1

t

∫
R

[
|∂αxΨ∗|2 |∂βxΨ∗|2 |∂γxΨ∗|2

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥∂αxΨ∗∥∥2

L∞(R×R)

∥∥∂βxΨ∗∥∥2
L∞(R×R)

∫ t+1

t

∫
R
|∂γxΨ∗(x+ a∗(t), s)|2e2νc|x| dx ds,

and we may rely on (A.48), as well as (A.45) or (A.47), depending on the value of γ.
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Case 2. Since α ≤ β ≤ γ and α+β+γ = k0+1, the only remaining case is α = 0, β = γ = k0 = 1.
In that situation, we write∫ t+1

t

∫
R

[
|Ψ∗|2 |∂xΨ∗|4

]
(x+ a∗(t), s)e2νc|x| dx ds

≤
∥∥Ψ∗∥∥2

L∞(R×R)

(
sup

s∈[t,t+1]

∫
R
|∂xΨ∗(x, s)|2 dx

)∫ t+1

t

∥∥∂xΨ∗(·+ a∗(t), s)eνc|x|
∥∥2
L∞(R) ds.

By conservation of the energy, we have

sup
s∈[t,t+1]

∫
R
|∂xΨ∗(x, s)|2 dx ≤ 2E(Ψ∗(·, 0)),

while, by the Sobolev embedding theorem,∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|
∥∥2
L∞(R)

≤Ac

(∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|
∥∥2
L2(R) +

∥∥∂xΨ∗(·+ a∗(t), s)eνc|·|
∥∥2
L2(R)

)
.

The conclusion then follows also from (A.45) and (A.47).

At this stage, we have established by induction that (A.45) and (A.46) hold for any k ≥ 1. In
order to �nish the proof of Proposition 6, we now turn these L2

loc in time estimates into L∞ in
time estimates, and then in uniform estimates.

Step 2. Let k ≥ 1. There exists a positive number Ak,c, depending only on k and c, such that∫
R

∣∣∂kxΨ∗(x+ a∗(t), t)
∣∣2e2νc|x| dx ≤ Ak,c, (A.49)

for any t ∈ R. In particular, we have∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R) ≤ Ak,c, (A.50)

for any t ∈ R, and a further positive constant Ak,c, depending only on k and c.

Here also, we �rst rely on the Sobolev embedding theorem and (A.43). By the Sobolev embed-
ding theorem, we have∥∥∂kxΨ∗(·+ a∗(t), t)eνc|·|

∥∥2
L2(R) ≤K

(∥∥∂s(∂kxΨ∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R))

+
∥∥∂kxΨ∗(·+ a∗(t), s)eνc|·|

∥∥2
L2([t−1,t+1],L2(R))

)
,

while, by (A.43),∥∥∂s(∂kxΨ∗(·+ a∗(t), s)eνc|·|
)∥∥2

L2([t−1,t+1],L2(R)) ≤2
(∥∥∂k+2

x Ψ∗(·+ a∗(t), s)eνc|·|
∥∥2
L2([t−1,t+1],L2(R))

+
∥∥Rk(Ψ

∗)(·+ a∗(t), s)eνc|·|
∥∥2
L2([t−1,t+1],L2(R))

)
,

so that we �nally deduce (A.49) from (A.46) and (A.45). Estimate (A.50) follows applying the
Sobolev embedding theorem.

We now translate (A.49) and (A.50) into estimates for η∗.

46



Step 3. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

(
∂kxη

∗(x+ a∗(t), t)
)2
e2νc|x| dx ≤ Ak,c, (A.51)

and ∥∥∂kxη∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R) ≤ Ak,c, (A.52)

for any t ∈ R.

Concerning (A.51), we �rst recall that

∂s
(
η∗(·+ a∗(t), s)

)
= 2⟨iΨ∗(·+ a∗(t), s), ∂xxΨ

∗(·+ a∗(t), s)⟩C.

Since Ψ∗ is uniformly bounded on R× R in view of (25), we can rely on (A.49) to claim that∥∥∂s(η∗(·+ a∗(t), s)eνc|·|
)∥∥

L2([t−1,t+1],L2(R)) ≤ Ac

∥∥∂xxΨ∗(·+ a∗(t), s)eνc|·|
∥∥
L2([t−1,t+1],L2(R)) ≤ Ac.

Since ∥∥η∗(·+ a∗(t), s)eνc|·|
∥∥
L2([t−1,t+1],L2(R)) ≤ Ac,

by Proposition 4, and since |a∗(t)− a∗(s)| is bounded independently of t for s ∈ [t− 1, t+1], we
can invoke again the Sobolev embedding theorem to obtain (A.51) for k = 0.

When k ≥ 1, we recall that

∂kxη
∗ = −2

k−1∑
j=0

(
k − 1

j

)⟨
∂jxΨ

∗, ∂k−j
x Ψ∗⟩

C,

by the Leibniz rule, so that (A.51) follows from (A.49), (A.50), and the property that Ψ∗ is
uniformly bounded on R×R by (25). The uniform bound in (A.52) is then a consequence of the
Sobolev embedding theorem arguing as for (A.50).

Finally, we provide the estimates for the function v∗.

Step 4. Let k ∈ N. There exists a positive number Ak,c, depending only on k and c, such that∫
R

(
∂kxv

∗(x+ a∗(t), t)
)2
e2νc|x| dx ≤ Ak,c, (A.53)

and ∥∥∂kxv∗(·+ a∗(t), t)eνc|·|
∥∥
L∞(R) ≤ Ak,c, (A.54)

for any t ∈ R.

Here, we recall that

v∗ =
(
1− η∗

)− 1
2
⟨
i∂xΨ

∗,Ψ∗⟩
C,

so that, by the Leibniz rule, we have

∂kxv
∗ =

k∑
j=0

k−j∑
ℓ=0

(
k

j

)(
k − j

ℓ

)
∂jx

(
(1− η∗)−

1
2

)⟨
i∂ℓ+1

x Ψ∗, ∂k−j−ℓ
x Ψ∗⟩

C.

At this stage, we can combine the Faa di Bruno formula with (25) and (A.52) to guarantee that∥∥∥∂jx((1− η∗)−
1
2

)
(·+ a∗(t), t)

∥∥∥
L∞(R)

≤ Aj,c,

for any j ∈ N and any t ∈ R. In view of (A.49) and (A.50), this leads to (A.53). The uniform
bound in (A.54) follows again from the Sobolev embedding theorem.

In view of (A.52) and (A.54), we conclude that the pair (η∗, v∗) is smooth on R × R, with
exponential decay. Estimate (32) is a direct consequence of (A.51) and (A.53). This completes
the proof of Proposition 6.
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B Complements on orbital stability and the operator Hc

B.1 Properties of the operator Hc

In this subsection, we recall and slightly extend some properties of the operator Hc which were
established in [26, 5].

For c ∈ (−
√
2,
√
2) \ {0}, the operator Hc is given in explicit terms by

Hc(ε) =

−1
4∂x

(
∂xεη
1−ηc

)
+ 1

4

(
2− ∂xxηc

(1−ηc)2
− (∂xηc)2

(1−ηc)3

)
εη −

(
c
2 + vc

)
εv

−
(

c
2 + vc

)
εη + (1− ηc)εv

 . (B.1)

It follows from the Weyl theorem and criterion that Hc is self-adjoint on L
2(R) × L2(R), with

domain H2(R)× L2(R), and that its essential spectrum is equal to

σess(Hc) =
[ 2− c2

3 +
√
1 + 4c2

,+∞
)
.

It was proved in [26, 5] that Hc has a unique negative eigenvalue, that its kernel is spanned
by ∂xQc, and that there exists a positive constant Λc, depending only and continuously on c,
such that we have the estimate Hc(ε) ≥ Λc∥ε∥2X , for any pair ε ∈ X(R) which satis�es the
orthogonality conditions ⟨ε, ∂xQc⟩L2(R)2 = P ′(Qc)(ε) = 0.

It follows from the characterization of the kernel here above that the operator Hc is an iso-
morphism from Dom(Hc) ∩ Span(∂xQc)

⊥ onto Span(∂xQc)
⊥. Moreover, given any k ∈ N, there

exists a positive number Ac, depending continuously on c, such that the inverse mapping H−1
c

satis�es ∥∥H−1
c (f, g)

∥∥
Hk+2(R)×Hk(R) ≤ Ac

∥∥(f, g)∥∥
Hk(R)2 , (B.2)

for any (f, g) ∈ Hk(R)2 ∩ Span(∂xQc)
⊥.

Indeed, the pair ε = H−1
c (f, g) is a solution in H2(R)× L2(R) to the equations −1

4∂x

(
∂xεη
1−ηc

)
= f − 1

4

(
2− ∂2

xxηc
(1−ηc)2

− (∂xηc)2

(1−ηc)3

)
εη +

(
c
2 + vc

)
εv,

(1− ηc)εv = g +
(

c
2 + vc

)
εη,

(B.3)

which satis�es the bound

∥εη∥L2(R) + ∥εv∥L2(R) ≤ κc
(
∥f∥L2(R) + ∥g∥L2(R)

)
, (B.4)

with

κc := min
{ 1
λ
, λ ̸= 0 s.t. λ ∈ σ(Hc)

}
.

In particular, since Hc depends analytically on c, and its eigenvalue 0 is isolated, the constant
κc is positive and depends continuously on c. Since

min
x∈R

{
1− ηc(x)

}
=
c2

2
> 0, (B.5)

we can apply standard elliptic theory to the �rst equation in (B.3) to obtain

∥εη∥H2(R) ≤ Ac

(
∥f∥L2(R) + ∥g∥L2(R)

)
,
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where Ac also depends continuously on c. Combining the second equation in (B.3) with (B.4)
and (B.5), it follows that

∥εv∥Hmin{k,2}(R) ≤ Ac

(
∥f∥Hk(R) + ∥g∥Hk(R)

)
.

when (f, g) ∈ Hk(R)2. Applying again standard elliptic theory to the �rst equation in (B.3), we
are led to

∥εη∥Hmin{k+2,4}(R) ≤ Ac

(
∥f∥Hk(R) + ∥g∥Hk(R)

)
.

A bootstrap argument then yields (B.2), with a constant Ac which depends continuously on c.

B.2 Proof of Theorem 3

As mentioned in the introduction, the proof of Theorem 3 consists in a few adaptations with
respect to the arguments in [26, 5].

The global existence of the solution (η, v) to (HGP) for an initial data (η0, v0) which satis�es
the condition (4) is indeed established in [5, Theorem 2].

The existence for a �xed number t ∈ R of the modulation parameters a(t) and c(t) in (5) is
shown in [5, Proposition 2], as well as the two estimates in (8). Combining these estimates with
the Sobolev embedding theorem of H1(R) into C0(R) and the bound (B.5) on 1 − ηc, we can
write

max
x∈R

η(x, t) ≥
∥∥ηc(t)∥∥L∞(R) −

∥∥εη(·, t)∥∥L∞(R) ≥ 1− c(t)2

2
−Kcα0 ≥ 1− c2

2
−Kcαc.

For αc small enough, estimate (7) follows with σc := c2/2 +Kcαc.

Concerning the C1-dependence on t of the numbers a(t) and c(t), it is proved in [5, Proposition
4], as well as the linear estimate∣∣c′(t)∣∣+ ∣∣a′(t)− c(t)

∣∣ ≤ Ac

∥∥ε(·, t)∥∥
X(R). (B.6)

The only remaining point to verify is that the linear dependence on ε of c′(t) in (B.6) is actually
quadratic.

In order to prove this further property, we di�erentiate the second orthogonality relation in (6)
with respect to time. Combining with (12), we obtain

c′
d

dc

(
P (Qc)

)
= P ′(Qc)

(
JHc(ε)

)
+
(
a′ − c

)
P ′(Qc)

(
∂xε+ ∂xQc

)
+ c′

⟨
P ′′(Qc)(∂cQc), ε

⟩
L2(R)2 + P ′(Qc)

(
JRcε

)
,

(B.7)

at any time t ∈ R. The �rst term in the right-hand side of (B.7) vanishes since

P ′(Qc)
(
JHc(ε)

)
= 2⟨∂xQc,Hc(ε)⟩L2(R)2 = 2⟨Hc(∂xQc), ε⟩L2(R)2 = 0, (B.8)

by (10). Concerning the second one, we have

P ′(Qc)
(
∂xQc

)
=

∫
R
∂x
(
ηc(x)vc(x)

)
dx = 0, (B.9)

while we can deduce from (B.6) that∣∣a′ − c
∣∣∣∣P ′(Qc)

(
∂xε
)∣∣ ≤ Ac

∥∥ε∥∥2
X(R). (B.10)
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Similarly, the third term can be estimated as∣∣c′∣∣∣∣⟨P ′′(Qc)(∂cQc), ε⟩L2(R)2
∣∣ ≤ Ac

∥∥ε∥∥2
X(R). (B.11)

For the last term, we recall that

[
Rc(t)ε(·, t)

]
η
:=

(∂xηc)
2ε2η(3− ηc − 2η)

8(1− ηc)3(1− η)2
+

(∂xηc)εη(∂xεη)(2− ηc − η)

4(1− ηc)2(1− η)2
+

(∂xεη)
2

8(1− η)2
− ε2v

2

− ∂x

( εη(∂xεη)

4(1− ηc)(1− η)
+

(∂xηc)ε
2
η

4(1− ηc)2(1− η)

)
,[

Rc(t)ε(·, t)
]
v
:=− εηεv,

(B.12)

so that we can compute

P ′(Qc)
(
JRcε

)
=

∫
R
(∂xxηc)

( εη(∂xεη)

2(1− ηc)(1− η)
+

(∂xηc)ε
2
η

2(1− ηc)2(1− η)

)
−
∫
R

(
2(∂xvc)εηεv + (∂xηc)ε

2
v

)
−
∫
R
(∂xηc)

((∂xηc)2ε2η(3− ηc − 2η)

4(1− ηc)3(1− η)2

+
(∂xηc)εη(∂xεη)(2− ηc − η)

2(1− ηc)2(1− η)2
+

(∂xεη)
2

4(1− η)2

)
.

It is then enough to apply again the Sobolev embedding theorem and to use the control on 1− η
and c provided by (7), respectively (8), to obtain∣∣P ′(Qc)

(
JRcε

)∣∣ ≤ Ac

∥∥ε∥∥2
X(R).

Recalling that
d

dc

(
P (Qc)

)
= −

(
2− c2

) 1
2 ̸= 0,

we can combine the identity (B.7) with the estimates (B.8), (B.9), (B.10) and (B.11) to prove
the quadratic estimate of c′(t) in (9). This concludes the proof of Theorem 3.
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