I \(a, (i) \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \quad \) \((ii) \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \quad \) \((iii) \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \quad \)

II. \(\forall a \in \mathbb{R}[X] \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

III. \(\forall a \in \mathbb{R}[X] \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

IV. \(\mathbb{R} \times \mathbb{R} \times \mathbb{R} \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

V. \(\forall a \in \mathbb{R}[X] \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

VI. \(\forall a \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

VII. \(\forall a \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

VIII. \(\forall a \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]

IX. \(\forall a \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \quad b \in \mathbb{R} \quad a \circ b = a \circ b \quad \)

\[
\begin{align*}
\text{I.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y \\
\text{II.} & \quad \frac{3}{4} x + \frac{1}{4} y = \frac{3}{4} x + \frac{1}{4} y
\end{align*}
\]
b. $\forall n \in \mathbb{N}, d^n(\mathbb{N}) = n \Rightarrow (\mathbb{R})_{x \in \mathbb{R}}$ est une base de $\mathbb{R}(x)$.

VII. a divise b, alors : $\exists f \in \mathbb{R}(x)$ t.-l, $b = f \cdot a$.

VIII. (i) $x^3 + x^2 + x - 1 = (x + 1) (x^2 - x - 1) + 1$; (ii) $x^4 + x^2 + 1 = (x^2 + 1) (x^2 + x + 1)$; (iii) $x^4 - 3x^2 - 3x - 1 = (x^4 + x^2 + x + 1)$.

IX. La division euclidienne fournit : $x^4 - x + a = (x^2 + x^2 + x + 1) (x^2 + x + 1) + (x - a)$.

X. Pour la division euclidienne : $f(x, y) \in \mathbb{R}(x) \times y$. $l = Q \cdot (x - a) + R$ avec $R(l) \in 0 = a = r(\pm \sqrt{y})$.

XI. a. Pour la division euclidienne : $f(x, y) \in \mathbb{R}(x) \times y$. $l = Q \cdot (x - a) + R(l)$.

XII. b. $X^4 + x^2 + x + 1 = (x^2 + 1) (x^2 + x + 1)$.

XV. $x^3 + x^2 + x - 1 = (x - 1) (x^2 + x + 1) + x^2 + 1$.
(v) \(\ell \circ \circ \circ (\ell, \ell) = \ell \); (vi) \(\ell \circ \circ \circ (\ell, \ell) = X \circ \ell \).

\(\ell \circ \circ \circ (\ell, \ell) = X \circ \ell \).

\(\ell \circ \circ \circ (\ell, \ell) = X \circ \ell \).

\(\ell \circ \circ \circ (\ell, \ell) = X \circ \ell \).

\(\ell \circ \circ \circ (\ell, \ell) = X \circ \ell \).
XX.1. Pour sérécence un réel réel
et c = rV^3, soit la condition \(b^2 - 4ac = 0 \).

2. L'a une racine multiple \(\gamma \in \mathbb{K} \) si il existe \(\gamma \in \mathbb{K} \) t.q. \(\ell(\gamma) = \ell'(\gamma) = 0 \); comme \(\ell'(\gamma) = 3 \gamma^2 + p \) et \(\ell(\gamma) = \gamma^3 + \gamma + q \), seco équivalent en fait que : \(\frac{3}{2} \gamma + \frac{1}{4} = 0 \).

XXXII 2.a. \(\beta \in \mathbb{K} \) t.q. \(\beta + 1 = \alpha (\gamma - 1)^3 \); \(\ell' = \alpha' (\gamma - 1)^3 + 1 \) et \(\ell(x) = (x - 1)^3 \) (dou x - 1)^3 \) divise \(\ell \) ; de même, \((x + 1)^3 \) divise \(\ell' \); il existe \(\alpha \in \mathbb{K} \) t.q. \(\beta = \alpha (x - 1)^3 \) et \(\alpha + 1 \) est premier avec \(x + 1 \) divise \(\alpha \); soit \(\alpha = 5(x + 1)^3 + 1 \) et \(\ell = 5(x + 1)^3 (x + 1)^3 \) est divisible par \((x + 1)^3 (\gamma + 1)^3 \).

b. Comme \(\ell' = \ell'(x - 1) \) et \((x - 1)^3 (x + 1)^3 \), il existe \(\beta \in \mathbb{K} \) t.q. \(\beta = \alpha (x - 1)^3 \) et \(\ell' = 5(x + 1)^3 (x - 1)^3 \) est divisible par \(\alpha \).

comme \(\ell(x) \leq 2 \), il existe \(\beta \in \mathbb{K} \) t.q. \(\beta = \alpha (x - 1)^3 \) et \(\ell' = (x + 1)^3 - 5(x + 1)^3 \) est divisible par \(\alpha \).

XXXIII 1. L'a \(a = 0 \), il existe \(\beta \in \mathbb{K} \) t.q. \(\beta = \alpha (x - 1)^3 \) et \(\ell' = \beta (x - 1)^3 \) divise \(\ell \).
1. Il existe \(x \in \mathbb{R} \) t.q. \(x^2 + 1 = 0 \), alors \(x = \pm i \), ce qui est absurde.

2. Lemme. \(e^{i \theta} \) est \(\mathbb{R} \)-période. On possède \(n \) racines réelles distinctes, et \(e^i \) possède \(n \) racines réelles distinctes, toutes les racines de \(e^i = (e^i)^n \) sont réelles ; comme \(e^{i2} \) n'a aucune racine réelle, toutes les racines complexes de \(e^{i2} + 1 \) sont de multiplicité

XXVI. Supposons que \(e^i \) possède une racine \(S \in \mathbb{R} \) de multiplicité supérieure ou égale à 2.

\(e^i(S) = e^i(S) = 1 \), comme \(e^{i} = e^{i-2k} \), \(S = \frac{\pi}{m} \), \(\frac{\pi}{m} \) \(\in \mathbb{R} \), donc \(\frac{\pi}{m} = 0 \Rightarrow S = 0 \).

Comme \(e^i(1) = 1 \), ceci est absurde. Comme \(e^i \) est réelle, \(e^i \) possède \(m \) racines distinctes dans \(\mathbb{R} \).

XXVII. (i) \(R = (x+i)(x+y)(x+y) \); (ii) \(Q = (x - \frac{i+\sqrt{2}}{\sqrt{2}})(x - \frac{i+\sqrt{2}}{\sqrt{2}})(x + \frac{i+\sqrt{2}}{\sqrt{2}}) \); (iii) \(R = (x-\frac{i}{\sqrt{2}})(x+\frac{i}{\sqrt{2}})(x+i)(x-i)(x+\sqrt{2})(x-\sqrt{2}) \); (iv) \(S = (x + i)(x - i)(x + \sqrt{2})(x - \sqrt{2})(x + 1)(x - 1) \).

XXVIII. 1. \(x + 1 = 1 \).

1. \(1 + 1 \neq 1 \Rightarrow 1 = 1 \), \(2 \neq 1 \).

2. \(e^{i2} = 1 \Rightarrow 3 - 2x + 1 = 0 \Rightarrow x = \frac{1}{2} \Rightarrow b = 1 \).

3. \(e = (x + i)^2 \), où \(x^2 + x + 1 \) est indiscutable dans \(\mathbb{R} \((x + i)^2 = (x + i)(x + i) = (x^2 + x + 1) \).

XXX. \(x^{n-1} \cdot 2 \cdot \cos \theta \cdot x^{n-1} = (x^2 - 1)(x^2 - 1) \cdot (x^2 + 1) \cdot \cos \theta \).